Phenotypic analysis

generating the correct format for all the fly eclosion time files-

library(knitr)
library(kableExtra)
library(gridExtra)
library(scales)
library(RColorBrewer)
library(tidyverse) #dplyr package included
library(stringr)
library(lme4)
library(nlme)
library(effects)
library(DESeq2)
library(qiime2R)
library(phyloseq)
library(DivNet)
library(vegan)
library(sjPlot) #  mixed effects table summary

theme_set(theme_minimal() + theme(legend.position = "bottom", axis.title =  element_text(size = 20), axis.text =  element_text(size = 10), strip.text = element_text(size = 20)))
flydata <- read_csv("data/flydata.csv") %>% mutate(id = paste(diet, selection, round, line, vial), time = emergence_time, replicate = paste(diet, selection, round, line))
## Parsed with column specification:
## cols(
##   emergence_time = col_double(),
##   round = col_double(),
##   diet = col_character(),
##   selection = col_character(),
##   line = col_double(),
##   vial = col_character()
## )

Mixed model analysis

flydataFactors <- flydata %>% mutate(day = ifelse(time<225, 1, ifelse(time<240, 2, ifelse(time<270, 3, 4)))) %>% as.data.frame()
flydataFactors$selection <- factor(flydataFactors$selection)
flydataFactors$diet <- factor(flydataFactors$diet)
mod <- lmer(time ~ round * diet * selection + (1|line:replicate), data = flydata )
hist(resid(mod))

tab_model(mod, show.icc = FALSE, show.re.var = FALSE, pred.labels = c("Intercept (High-sugar diet, No-selection control)", "Selection cycle", "No-sugar diet", "Selection treatment", "Selection cycle × No-sugar diet", "Selection cycle × Selection treatment", "No-sugar diet × Selection treatment", "Selection cycle × No-sugar diet× Selection treatment"))
  time
Predictors Estimates CI p
Intercept (High-sugar diet, No-selection control) 292.96 288.36 – 297.57 <0.001
Selection cycle -2.59 -3.95 – -1.23 <0.001
No-sugar diet -50.00 -56.29 – -43.70 <0.001
Selection treatment 3.58 -3.21 – 10.37 0.302
Selection cycle × No-sugar diet 0.81 -1.06 – 2.68 0.397
Selection cycle × Selection treatment -0.85 -2.83 – 1.14 0.402
No-sugar diet × Selection treatment -1.52 -10.57 – 7.53 0.742
Selection cycle × No-sugar diet× Selection treatment 0.65 -2.03 – 3.33 0.634
N line 10
N replicate 199
Observations 10850
Marginal R2 / Conditional R2 0.779 / 0.834
effect(term="round:selection", xlevels=list(selection=c("selection","noselection")), mod=mod) %>% as.data.frame() %>% ggplot(aes(round,fit,color=selection))+geom_line()
## NOTE: round:selection is not a high-order term in the model

effect(term="round:diet", xlevels=list(diet=c("control","nsd")), mod=mod) %>% as.data.frame() %>% ggplot(aes(round,fit,color=diet))+geom_line()
## NOTE: round:diet is not a high-order term in the model

effect(term="round:diet:selection", xlevels=list(selection=c("selection","noselection"),diet=c("control","nsd")), mod=mod) %>% as.data.frame()%>%
  ggplot(aes(round,fit,color=selection,linetype=diet))+geom_line()

diet_labeller <- function(variable, value) {
  diet_names <- list('nsd'='No-sugar diet', 'hsd'='High-sugar diet')
  selection_names <- list('selection'='Selection', 'noselection'='No Selection')
  if (variable == 'selection')
    return(selection_names[value])
  else if (variable == 'diet') 
    return(diet_names[value])
  else
    return(as.character(value))
}
effect(term="round:diet:selection", xlevels=list(selection=c("selection","noselection"),diet=c("control","nsd")), mod=mod) %>%
  as.data.frame() %>% 
  left_join(flydata, by = c("round", "diet", "selection")) %>% 
  ggplot(aes(round-1, fit, color=selection)) + geom_boxplot(aes(round-1, time, group = interaction(round,selection)), alpha = 0.1) +
  geom_line() + geom_ribbon(aes(ymin=lower,ymax=upper, linetype = NA), alpha=0.3) + 
  facet_grid(diet~., scales="free", labeller=diet_labeller) + 
  scale_color_manual( labels = c("Control", "Selection"), values = c("dodgerblue", "orange")) + ylab("Eclosion time (hours)") + xlab("Selection cycle") + guides(alpha = F, color=guide_legend(override.aes=list(fill=NA)), legend.title=element_blank())
## Warning: Column `diet` joining factor and character vector, coercing into
## character vector
## Warning: Column `selection` joining factor and character vector, coercing
## into character vector
## Warning: The labeller API has been updated. Labellers taking `variable`and
## `value` arguments are now deprecated. See labellers documentation.

effect(xlevels=list(round=c(1,5)), term="round:diet",  mod=mod) %>% as.data.frame()
## NOTE: round:diet is not a high-order term in the model
##   round diet      fit       se    lower    upper
## 1     1  hsd 291.7926 1.287873 289.2682 294.3171
## 2     5  hsd 279.6747 1.165651 277.3898 281.9595
## 3     1  nsd 242.1527 1.126594 239.9444 244.3610
## 4     5  nsd 234.6194 1.120892 232.4222 236.8165
ggsave("figures/modeFit.pdf", height=7, width =5)

ggplot(flydataFactors, aes(day, fill=selection))+geom_histogram(stat="count", position="dodge") +facet_grid(.~diet) 
## Warning: Ignoring unknown parameters: binwidth, bins, pad

tradeoff <- flydata %>% group_by(diet, round, selection, line, replicate) %>% summarize(time = mean(time), flies = n()) 
tradeoff %>% filter(round == 5) %>% ggplot(aes(time, flies, color = selection, shape = as.factor(round))) + geom_point() + facet_grid(.~diet, scales = "free") + stat_smooth(method="lm", aes(group = 1)) 

Selection has no effect on fly emergence, though emergence time decreases throughout the experiment in any case.

In round 4 there are no flies eclosing in the fourth day. Maybe some problem? Does this affect results?

mod2 <- lme(time ~ round * diet * selection , random=~1|line/replicate, method="REML", data = flydata %>% filter(round != 4))
summary(mod2)
## Linear mixed-effects model fit by REML
##  Data: flydata %>% filter(round != 4) 
##        AIC      BIC    logLik
##   75772.98 75852.16 -37875.49
## 
## Random effects:
##  Formula: ~1 | line
##         (Intercept)
## StdDev:   0.0183111
## 
##  Formula: ~1 | replicate %in% line
##         (Intercept) Residual
## StdDev:    6.227346 10.92282
## 
## Fixed effects: time ~ round * diet * selection 
##                                      Value Std.Error   DF   t-value
## (Intercept)                      292.13191  2.358482 9727 123.86438
## round                             -1.75222  0.728942  142  -2.40379
## dietnsd                          -49.72051  3.223359  142 -15.42506
## selectionselection                 3.51368  3.473564  142   1.01155
## round:dietnsd                      0.51087  1.009733  142   0.50595
## round:selectionselection          -0.80158  1.057964  142  -0.75766
## dietnsd:selectionselection        -0.65678  4.630908  142  -0.14182
## round:dietnsd:selectionselection  -0.18434  1.440149  142  -0.12800
##                                  p-value
## (Intercept)                       0.0000
## round                             0.0175
## dietnsd                           0.0000
## selectionselection                0.3135
## round:dietnsd                     0.6137
## round:selectionselection          0.4499
## dietnsd:selectionselection        0.8874
## round:dietnsd:selectionselection  0.8983
##  Correlation: 
##                                  (Intr) round  ditnsd slctns rnd:dt rnd:sl
## round                            -0.895                                   
## dietnsd                          -0.732  0.655                            
## selectionselection               -0.679  0.608  0.497                     
## round:dietnsd                     0.646 -0.722 -0.890 -0.439              
## round:selectionselection          0.617 -0.689 -0.451 -0.901  0.497       
## dietnsd:selectionselection        0.509 -0.456 -0.696 -0.750  0.620  0.676
## round:dietnsd:selectionselection -0.453  0.506  0.624  0.662 -0.701 -0.735
##                                  dtnsd:
## round                                  
## dietnsd                                
## selectionselection                     
## round:dietnsd                          
## round:selectionselection               
## dietnsd:selectionselection             
## round:dietnsd:selectionselection -0.892
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -5.12947950 -0.76200648 -0.09791744  0.81577919  4.72341589 
## 
## Number of Observations: 9886
## Number of Groups: 
##                line replicate %in% line 
##                  10                 159

The model is robust to dropping this round entirely

Microbial analysis

Load data manually from qiime2

otus <- read_qza("data/table.qza")
taxonomy <- read_qza("data/taxonomy.qza")
tree<-read_qza("data/rooted-tree.qza")
taxonomy<-read_qza("data/taxonomy.qza")
tax_table <- data.frame(taxon = as.character(taxonomy$data$Taxon)) %>%  separate(taxon, c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species"), sep = ";") %>% mutate_all(funs(gsub(".*__", "", .))) 
## Warning: Expected 7 pieces. Additional pieces discarded in 73 rows [4, 9,
## 23, 40, 63, 70, 79, 83, 89, 93, 107, 108, 109, 111, 119, 120, 123, 126,
## 130, 133, ...].
## Warning: Expected 7 pieces. Missing pieces filled with `NA` in 445 rows [1,
## 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, ...].
## Warning: funs() is soft deprecated as of dplyr 0.8.0
## Please use a list of either functions or lambdas: 
## 
##   # Simple named list: 
##   list(mean = mean, median = median)
## 
##   # Auto named with `tibble::lst()`: 
##   tibble::lst(mean, median)
## 
##   # Using lambdas
##   list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once per session.
rownames(tax_table) <- taxonomy$data$Feature.ID
tax_table <- as.matrix(tax_table)
# loading metadata
metadata <- read.table("data/metadata.txt", sep='\t', header=T, row.names = 1, comment="") 
   # create a bunch of category columns for divnet and append phenotypic data
metadata <- metadata %>% 
  mutate( sample_names = rownames(metadata), 
          round = round - 1,
          roundSelection = paste(round, selection), 
          roundSelectionDiet = paste(round, selection, diet),  
          id = paste(diet, selection, round, line, vial),
          line = factor(line)) %>%
  left_join(flydata %>% group_by(id) %>% summarize(time = mean(time))) 
rownames(metadata) <- metadata$sample_names 

# make final product
microbedat <- phyloseq(otu_table(otus$data, taxa_are_rows = T), phy_tree(tree$data), tax_table(tax_table), sample_data(metadata))

Descriptive bar plots

These are not super-useful, but highlight the difference between diets

abundantClasses <- psmelt(microbedat) %>% group_by(Genus) %>% summarize(frac = n() / nrow(.)) %>% filter(frac > 0.01) %>% na.omit() %>% pull(Genus)

#https://personal.sron.nl/~pault/data/colourschemes.pdf
mycolsBright <- c( "Acetobacter" = "#4477AA", "Acinetobacter" = "#66CCEE",  "Lactobacillus" = "#228833"  , "Pseudomonas" = "#CCBB44",     "Staphylococcus" = "#EE6677")

psmelt(microbedat) %>%filter(Genus %in% abundantClasses) %>% ggplot(aes_string(x = "round", y = "Abundance", fill = "Genus")) + geom_bar(stat = "identity", position = "fill") + theme(axis.text.x = element_text(angle = 0, hjust = 0), legend.text=element_text(size=rel(1)), legend.title=element_blank()) + scale_y_sqrt() + ylab(expression(sqrt("Fraction of community"))) + xlab("Selection cycle") + facet_grid(diet~selection, scales="free", labeller=diet_labeller) + scale_fill_manual(values = mycolsBright) 

ggsave("figures/barplot.pdf", height = 7, width = 7)

Alpha diversity

divnet_all <-  divnet(tax_glom(microbedat, taxrank = "Genus"), X = "roundSelectionDiet", ncores = 20)

divnet_summary <- divnet_all$shannon %>% summary %>% left_join(metadata) %>% group_by(roundSelectionDiet) %>% summarize(alpha = estimate[1], lower = lower[1], upper = upper[1], round = round[1], selection = selection[1], diet = diet[1]) 
divnet_summary %>% ggplot(aes(selection, alpha, color = selection)) + geom_point() + geom_linerange(aes(ymin = lower, ymax = upper)) + facet_grid(diet~round, scales = "free") + theme_minimal() + theme(axis.text.x=element_blank()) + xlab("Round of evolution") + guides(color = F)

ggsave("figures/divnet.pdf")
## Saving 5 x 5 in image

Alpha diversity using a less sophisticated approach

(p <- plot_richness(microbedat, "round", measures = "Shannon", color = "selection") + facet_grid(diet~., scales = "free_y") + stat_smooth(method="lm")  + scale_color_manual(name = "Selection", labels = c("Control", "Selection"), values = c("dodgerblue", "orange")) + ylab("Shannon diversity") + xlab("Selection cycle") + theme(legend.title=element_blank(), axis.text.x = element_text(angle = 0, hjust = 0)) )
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided does not have
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
## 
## We recommended that you find the un-trimmed data and retry.

tab_model(lm(value ~ diet*round, data = p$data), pred.labels = c("Intercept (High-sugar diet)", "No-sugar diet", "Selection cycle",  "Selection cycle × No-sugar diet"))
  value
Predictors Estimates CI p
Intercept (High-sugar diet) 0.04 -0.06 – 0.15 0.420
No-sugar diet 0.17 0.02 – 0.32 0.031
Selection cycle 0.02 -0.02 – 0.06 0.353
Selection cycle × No-sugar diet 0.20 0.14 – 0.26 <0.001
Observations 58
R2 / R2 adjusted 0.833 / 0.824
ggsave("figures/shannon.pdf", height = 6, width = 6)

Examining microbial community differentiation as in the mixed model

d = UniFrac(tax_glom(microbedat, taxrank = "Genus"))
d.mds <- metaMDS(d, zerodist=ignore)
## Run 0 stress 0.1661259 
## Run 1 stress 0.1661293 
## ... Procrustes: rmse 0.0004967718  max resid 0.00245224 
## ... Similar to previous best
## Run 2 stress 0.1773121 
## Run 3 stress 0.1662344 
## ... Procrustes: rmse 0.00521738  max resid 0.02349514 
## Run 4 stress 0.1775354 
## Run 5 stress 0.1826861 
## Run 6 stress 0.1957775 
## Run 7 stress 0.177312 
## Run 8 stress 0.1662322 
## ... Procrustes: rmse 0.005109491  max resid 0.02377291 
## Run 9 stress 0.1772646 
## Run 10 stress 0.1661298 
## ... Procrustes: rmse 0.003428709  max resid 0.02111954 
## Run 11 stress 0.1890769 
## Run 12 stress 0.1661294 
## ... Procrustes: rmse 0.0009662116  max resid 0.002815028 
## ... Similar to previous best
## Run 13 stress 0.1957786 
## Run 14 stress 0.1662543 
## ... Procrustes: rmse 0.003715019  max resid 0.02332357 
## Run 15 stress 0.1661258 
## ... New best solution
## ... Procrustes: rmse 0.0003046658  max resid 0.0009580474 
## ... Similar to previous best
## Run 16 stress 0.1662541 
## ... Procrustes: rmse 0.003707549  max resid 0.02341273 
## Run 17 stress 0.1755086 
## Run 18 stress 0.1661322 
## ... Procrustes: rmse 0.003473376  max resid 0.02142207 
## Run 19 stress 0.1750021 
## Run 20 stress 0.1661263 
## ... Procrustes: rmse 0.0004474407  max resid 0.001424323 
## ... Similar to previous best
## *** Solution reached
scrs <- cbind(metadata, data.frame(MDS1 = d.mds$points[,1], MDS2 = d.mds$points[,2])) 

cent <- cbind(metadata, data.frame(MDS1 = d.mds$points[,1], MDS2 = d.mds$points[,2])) %>% aggregate(cbind(MDS1, MDS2) ~ diet + round + selection, data = ., FUN = mean) 

segs <- merge(scrs, setNames(cent, c('diet', 'round','selection' ,'oNMDS1','oNMDS2')),
              by = c('diet', 'round', 'selection'), sort = FALSE)

ggplot(scrs, aes(x = MDS1, y = MDS2, shape = selection, color = factor(round))) +
  facet_wrap(~diet) + scale_colour_brewer(palette = "YlOrRd") + 
  geom_segment(data = segs,
               mapping = aes(xend = oNMDS1, yend = oNMDS2)) + # spiders
  geom_point(data = cent, size = 3) +                         # centroids
  geom_point() +                                              # sample scores
  coord_fixed()                                               # same axis scaling

(microbes.adonis <- adonis2(d ~ diet * selection * round, as(sample_data(microbedat), "data.frame"), permutations = 10000, strata = line))
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## 
## adonis2(formula = d ~ diet * selection * round, data = as(sample_data(microbedat), "data.frame"), permutations = 10000, strata = line)
##                      Df SumOfSqs      R2       F    Pr(>F)    
## diet                  1   2.0683 0.21845 16.6231 9.999e-05 ***
## selection             1   0.0594 0.00627  0.4771    0.8018    
## round                 1   0.2174 0.02296  1.7469    0.1220    
## diet:selection        1   0.2006 0.02119  1.6121    0.1566    
## diet:round            1   0.3981 0.04205  3.1994    0.0108 *  
## selection:round       1   0.2119 0.02238  1.7029    0.1327    
## diet:selection:round  1   0.0912 0.00963  0.7330    0.5859    
## Residual             50   6.2213 0.65708                      
## Total                57   9.4682 1.00000                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(betadisper(d, sample_data(microbedat)$diet))
## Warning in betadisper(d, sample_data(microbedat)$diet): some squared
## distances are negative and changed to zero
## Analysis of Variance Table
## 
## Response: Distances
##           Df  Sum Sq  Mean Sq F value  Pr(>F)  
## Groups     1 0.20142 0.201416  6.0247 0.01724 *
## Residuals 56 1.87216 0.033431                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(betadisper(d, sample_data(microbedat)$diet))
## Warning in betadisper(d, sample_data(microbedat)$diet): some squared
## distances are negative and changed to zero

microbes.adonis
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## 
## adonis2(formula = d ~ diet * selection * round, data = as(sample_data(microbedat), "data.frame"), permutations = 10000, strata = line)
##                      Df SumOfSqs      R2       F    Pr(>F)    
## diet                  1   2.0683 0.21845 16.6231 9.999e-05 ***
## selection             1   0.0594 0.00627  0.4771    0.8018    
## round                 1   0.2174 0.02296  1.7469    0.1220    
## diet:selection        1   0.2006 0.02119  1.6121    0.1566    
## diet:round            1   0.3981 0.04205  3.1994    0.0108 *  
## selection:round       1   0.2119 0.02238  1.7029    0.1327    
## diet:selection:round  1   0.0912 0.00963  0.7330    0.5859    
## Residual             50   6.2213 0.65708                      
## Total                57   9.4682 1.00000                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There are dispersion differences between the diets, so let’s analyze them separately

HSD permutation test

microbedat.hsd <- tax_glom(subset_samples(microbedat, diet == "hsd"), taxrank = "Genus")  
d.hsd = UniFrac(microbedat.hsd)
(hsd.adonis <- adonis2(d.hsd ~  selection * round, as(sample_data(microbedat.hsd), "data.frame"), permutations = 10000, strata = line))
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## 
## adonis2(formula = d.hsd ~ selection * round, data = as(sample_data(microbedat.hsd), "data.frame"), permutations = 10000, strata = line)
##                 Df SumOfSqs      R2      F Pr(>F)
## selection        1   0.1742 0.03838 1.0533 0.3919
## round            1   0.1023 0.02253 0.6184 0.7271
## selection:round  1   0.1275 0.02810 0.7711 0.5883
## Residual        25   4.1341 0.91099              
## Total           28   4.5380 1.00000

NSD permutation test

microbedat.nsd <- tax_glom(subset_samples(microbedat, diet == "nsd"), taxrank = "Genus")  
d.nsd = UniFrac(microbedat.nsd)
(hsd.adonis <- adonis2(d.nsd ~  selection * round, as(sample_data(microbedat.nsd), "data.frame"), permutations = 10000, strata = line))
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## 
## adonis2(formula = d.nsd ~ selection * round, data = as(sample_data(microbedat.nsd), "data.frame"), permutations = 10000, strata = line)
##                 Df SumOfSqs      R2      F    Pr(>F)    
## selection        1  0.08577 0.02997 1.0274     0.388    
## round            1  0.51320 0.17933 6.1469 9.999e-05 ***
## selection:round  1  0.17558 0.06135 2.1030     0.107    
## Residual        25  2.08724 0.72935                     
## Total           28  2.86179 1.00000                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(betadisper(d.nsd, sample_data(microbedat.nsd)$round))
## Warning in betadisper(d.nsd, sample_data(microbedat.nsd)$round): some
## squared distances are negative and changed to zero
## Analysis of Variance Table
## 
## Response: Distances
##           Df  Sum Sq  Mean Sq F value Pr(>F)
## Groups     4 0.09364 0.023411  0.4804 0.7498
## Residuals 24 1.16944 0.048727

Looks like there is evidence of community change in the low sugar diet over time, but no detectable change in the high sugar diet.

Changes in OTU abundance

As a function of fly emergence time

microbedat.phyloseq.time <- phyloseq_to_deseq2(subset_samples(microbedat, diet == "hsd" & time > 0), ~ time + line)
## converting counts to integer mode
microbedat.phyloseq.time <- results(DESeq(microbedat.phyloseq.time, test="LRT", fitType="local", reduced = ~ line))
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
head(microbedat.phyloseq.time[order(microbedat.phyloseq.time$pvalue),])
## log2 fold change (MLE): line 10 vs 1 
## LRT p-value: '~ time + line' vs '~ line' 
## DataFrame with 6 rows and 6 columns
##                                            baseMean    log2FoldChange
##                                           <numeric>         <numeric>
## 0bf86e80ab287770313005cfedc02aa6   24.7592917716998 0.792959035145591
## 2cb918624b64a0f450864feb5ef39a1c  0.878361477464068  3.21023370832391
## 7eb1df4a0a4af4d89aa9c5d5bf827444 0.0743967205000962   3.0540404867522
## 9b8f4530fffd78453dd5ecee8247fbc4 0.0686738958462426  2.99240537233919
## 3b4673bd2141d5ce0ac87fbee9a1c6ba  0.136370061541386  2.72699484726743
## 802547545e68bfb764fb7e3a66d71374   1.29543463551755  2.56150914514678
##                                             lfcSE              stat
##                                         <numeric>         <numeric>
## 0bf86e80ab287770313005cfedc02aa6 4.56651450273001 0.804998258767597
## 2cb918624b64a0f450864feb5ef39a1c 8.16099939918329 0.208639052557686
## 7eb1df4a0a4af4d89aa9c5d5bf827444 8.16244727825418  0.20626784308285
## 9b8f4530fffd78453dd5ecee8247fbc4 8.16250160489022 0.197380475545874
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 8.16271817372288 0.187755912760666
## 802547545e68bfb764fb7e3a66d71374 8.16302714417741 0.173307847146628
##                                             pvalue      padj
##                                          <numeric> <numeric>
## 0bf86e80ab287770313005cfedc02aa6 0.369603161261352         1
## 2cb918624b64a0f450864feb5ef39a1c 0.647836198117257         1
## 7eb1df4a0a4af4d89aa9c5d5bf827444 0.649708490881428         1
## 9b8f4530fffd78453dd5ecee8247fbc4 0.656843611044843         1
## 3b4673bd2141d5ce0ac87fbee9a1c6ba  0.66479095166259         1
## 802547545e68bfb764fb7e3a66d71374 0.677188596965612         1
microbedat.phyloseq.time <- phyloseq_to_deseq2(subset_samples(microbedat, diet == "nsd" & time > 0), ~ time + line)
## converting counts to integer mode
microbedat.phyloseq.time <- results(DESeq(microbedat.phyloseq.time, test="LRT", fitType="local", reduced = ~ line))
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
head(microbedat.phyloseq.time[order(microbedat.phyloseq.time$pvalue),])
## log2 fold change (MLE): line 10 vs 1 
## LRT p-value: '~ time + line' vs '~ line' 
## DataFrame with 6 rows and 6 columns
##                                           baseMean     log2FoldChange
##                                          <numeric>          <numeric>
## 6012605abede608110aa60e12695d5a3 0.340575758609416   2.95370524067047
## ddf83c0b68613f341902790a082bc5a3  1.25916863505581   2.17093562227027
## b656988f920c0d400c660c5f337ffb67 0.319977917188704 -0.693104787863253
## db9f0d4fb97420260553ad52e56ef69b  2.66350343321965 -0.477341066862258
## 3411f0860e8e37277e8ff7d546337c3f 0.267604860112273  -1.15447903586402
## e299dc11f1ef328a611946fb19e9422d 0.161589109470717   -1.0949771255914
##                                             lfcSE               stat
##                                         <numeric>          <numeric>
## 6012605abede608110aa60e12695d5a3 7.04224473995456  0.162895345989963
## ddf83c0b68613f341902790a082bc5a3 6.86706648601626  0.152606934512079
## b656988f920c0d400c660c5f337ffb67 7.02904222212107 0.0883245434138615
## db9f0d4fb97420260553ad52e56ef69b 5.72863054592215 0.0716390156040063
## 3411f0860e8e37277e8ff7d546337c3f 7.02060399826492 0.0504821230376891
## e299dc11f1ef328a611946fb19e9422d 7.02207742932735 0.0503916576102981
##                                             pvalue      padj
##                                          <numeric> <numeric>
## 6012605abede608110aa60e12695d5a3 0.686504711714834         1
## ddf83c0b68613f341902790a082bc5a3 0.696056423624934         1
## b656988f920c0d400c660c5f337ffb67  0.76631805586275         1
## db9f0d4fb97420260553ad52e56ef69b 0.788965154845989         1
## 3411f0860e8e37277e8ff7d546337c3f 0.822226457457341         1
## e299dc11f1ef328a611946fb19e9422d 0.822383156508776         1

No individual OTU is associated with fly emergence tim

As a function of round

microbedat.phyloseq.round <- phyloseq_to_deseq2(tax_glom(subset_samples(microbedat, diet == "hsd"), taxrank = "Genus"), ~ round + line)
## converting counts to integer mode
##   the design formula contains a numeric variable with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
microbedat.phyloseq.round <- results(DESeq(microbedat.phyloseq.round, test="LRT", fitType="local", reduced = ~  line))
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
head(microbedat.phyloseq.round[order(microbedat.phyloseq.round$pvalue),])
## log2 fold change (MLE): line 10 vs 1 
## LRT p-value: '~ round + line' vs '~ line' 
## DataFrame with 6 rows and 6 columns
##                                          baseMean     log2FoldChange
##                                         <numeric>          <numeric>
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 13.0118428681771 0.0177751212782488
## 5b3a8ffeed018d279c38505129abd5fd 3.74030565186215   3.31900341871001
## c5395c876efbfada63433d5be9c4e06b 2.76782618237799   3.31736835414907
## e1b2e90c23e8c2c49d7895f14e441f96  4.6691847512055   5.27096330350529
## b75a5884989d17f8424b7c08ee28f09c 3.76462953569669  -6.71570016400104
## 37d1cd8011e75115ae32119254132bca 66.2220264893501 -0.246551488586504
##                                             lfcSE              stat
##                                         <numeric>         <numeric>
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 7.21607893072118  1.88433008785536
## 5b3a8ffeed018d279c38505129abd5fd 7.20334660758818  1.14124405928748
## c5395c876efbfada63433d5be9c4e06b 7.20349863849314  1.14103223005445
## e1b2e90c23e8c2c49d7895f14e441f96 7.18907304294161 0.904319672596593
## b75a5884989d17f8424b7c08ee28f09c 7.24272351866331 0.852913390973008
## 37d1cd8011e75115ae32119254132bca 2.14968286017655 0.837262057786575
##                                             pvalue      padj
##                                          <numeric> <numeric>
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 0.169842820067783         1
## 5b3a8ffeed018d279c38505129abd5fd 0.285389604953306         1
## c5395c876efbfada63433d5be9c4e06b 0.285434317751509         1
## e1b2e90c23e8c2c49d7895f14e441f96 0.341626082721452         1
## b75a5884989d17f8424b7c08ee28f09c 0.355729458028925         1
## 37d1cd8011e75115ae32119254132bca 0.360180999508781         1
microbedat.phyloseq.round <- phyloseq_to_deseq2(tax_glom(subset_samples(microbedat, diet == "nsd"), taxrank = "Genus"), ~ round + line)
## converting counts to integer mode
##   the design formula contains a numeric variable with integer values,
##   specifying a model with increasing fold change for higher values.
##   did you mean for this to be a factor? if so, first convert
##   this variable to a factor using the factor() function
microbedat.phyloseq.round <- results(DESeq(microbedat.phyloseq.round, test="LRT", fitType="local", reduced = ~  line))
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## 1 rows did not converge in beta, labelled in mcols(object)$fullBetaConv. Use larger maxit argument with nbinomLRT
head(microbedat.phyloseq.round[order(microbedat.phyloseq.round$pvalue),])
## log2 fold change (MLE): line 10 vs 1 
## LRT p-value: '~ round + line' vs '~ line' 
## DataFrame with 6 rows and 6 columns
##                                          baseMean     log2FoldChange
##                                         <numeric>          <numeric>
## 46d866c5c1bdd89200e1867baf5567db 55306.2023332879   3.21081126637371
## e481c86d25c16bda35869bb7b1232252 280.892914342214   2.25787012803927
## 82a590792bb28943e234eec7d37ffafe 37.3456168142284  -5.18037282148377
## fe201038a0eb3464a9a3afbc0b91f168 21.2933351542597   -18.619012334243
## 54f0d22e60ac26b58c06de3fb6d137c4 2624.19915647487 -0.795983967793166
## 3b4673bd2141d5ce0ac87fbee9a1c6ba  121.62356176636  -1.52138335944504
##                                             lfcSE             stat
##                                         <numeric>        <numeric>
## 46d866c5c1bdd89200e1867baf5567db 3.53312015752624 7.08814953364737
## e481c86d25c16bda35869bb7b1232252 4.80953892946386  6.1675163692334
## 82a590792bb28943e234eec7d37ffafe 7.05850480399858 2.46288128091848
## fe201038a0eb3464a9a3afbc0b91f168 7.15549084325466 1.78885355164293
## 54f0d22e60ac26b58c06de3fb6d137c4 3.16734401827821 1.33205066678266
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 2.35489949552596 1.24766934998371
##                                               pvalue              padj
##                                            <numeric>         <numeric>
## 46d866c5c1bdd89200e1867baf5567db 0.00775953271076444 0.104093722897698
## e481c86d25c16bda35869bb7b1232252  0.0130117153622122 0.104093722897698
## 82a590792bb28943e234eec7d37ffafe   0.116564785919079 0.621678858235086
## fe201038a0eb3464a9a3afbc0b91f168   0.181065908653573 0.703994896226761
## 54f0d22e60ac26b58c06de3fb6d137c4   0.248440729475066 0.703994896226761
## 3b4673bd2141d5ce0ac87fbee9a1c6ba   0.263998086085035 0.703994896226761
head(microbedat.phyloseq.round[order(microbedat.phyloseq.round$pvalue),])
## log2 fold change (MLE): line 10 vs 1 
## LRT p-value: '~ round + line' vs '~ line' 
## DataFrame with 6 rows and 6 columns
##                                          baseMean     log2FoldChange
##                                         <numeric>          <numeric>
## 46d866c5c1bdd89200e1867baf5567db 55306.2023332879   3.21081126637371
## e481c86d25c16bda35869bb7b1232252 280.892914342214   2.25787012803927
## 82a590792bb28943e234eec7d37ffafe 37.3456168142284  -5.18037282148377
## fe201038a0eb3464a9a3afbc0b91f168 21.2933351542597   -18.619012334243
## 54f0d22e60ac26b58c06de3fb6d137c4 2624.19915647487 -0.795983967793166
## 3b4673bd2141d5ce0ac87fbee9a1c6ba  121.62356176636  -1.52138335944504
##                                             lfcSE             stat
##                                         <numeric>        <numeric>
## 46d866c5c1bdd89200e1867baf5567db 3.53312015752624 7.08814953364737
## e481c86d25c16bda35869bb7b1232252 4.80953892946386  6.1675163692334
## 82a590792bb28943e234eec7d37ffafe 7.05850480399858 2.46288128091848
## fe201038a0eb3464a9a3afbc0b91f168 7.15549084325466 1.78885355164293
## 54f0d22e60ac26b58c06de3fb6d137c4 3.16734401827821 1.33205066678266
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 2.35489949552596 1.24766934998371
##                                               pvalue              padj
##                                            <numeric>         <numeric>
## 46d866c5c1bdd89200e1867baf5567db 0.00775953271076444 0.104093722897698
## e481c86d25c16bda35869bb7b1232252  0.0130117153622122 0.104093722897698
## 82a590792bb28943e234eec7d37ffafe   0.116564785919079 0.621678858235086
## fe201038a0eb3464a9a3afbc0b91f168   0.181065908653573 0.703994896226761
## 54f0d22e60ac26b58c06de3fb6d137c4   0.248440729475066 0.703994896226761
## 3b4673bd2141d5ce0ac87fbee9a1c6ba   0.263998086085035 0.703994896226761

Estimating selection coefficients and heritability

Selection coefficient

all_means<-read.csv("column_level_means_allfiles.csv",header=TRUE)
average_means<-all_means%>%group_by(fullname,generation,line)%>%summarise_at(.vars = names(.)[2],funs(mean(., na.rm=TRUE)))

#adding the selected/choosen vial informtion-
choosen_means<-read.csv("meaneclosion_parentandoffspring_data_linear.csv",header=TRUE)

#joining the two files- #all.y=TRUE as we need to include the zero means
selection2<-merge(average_means,choosen_means,by.x=c("generation","fullname","line"),by.y=c("Generation","Diet","Line"),all.y=TRUE)

selection2[is.na(selection2)] <- 0

#selection-coefficient calculations-
selection_coefficient<-selection2%>%mutate(selection_coefficient=vial_mean/mean_of_each_column)
selection_coefficient$selection<-unlist(lapply(strsplit(as.character(selection_coefficient$fullname),split="_"),"[",2))
selection_coefficient$diet<-unlist(lapply(strsplit(as.character(selection_coefficient$fullname),split="_"),"[",1))

selected_only<-selection_coefficient%>%filter(selection=="selection")
selected_only<-selected_only%>%filter(!selection_coefficient==Inf)

#some summations-
selected_summation<-selected_only %>% group_by(diet,generation) %>% summarise_at(vars(mean_of_each_column,vial_mean), sum)
selected_summation$mean_of_each_column<-selected_summation$mean_of_each_column/10
selected_summation$vial_mean<-selected_summation$vial_mean/10
selected_summation<-selected_summation%>%mutate(selection_coefficient=vial_mean-mean_of_each_column)

(s<-mean(selected_summation$selection_coefficient)) #selection coefficient
## [1] -6.833194
sd(selected_summation$selection_coefficient)
## [1] 11.4756

‘Heritability’

This is the correlation between phenotypes in source and donor media

parent_offspring<-read.csv("meaneclosion_parentandoffspring_Data_FOandF1.csv",header=TRUE)
parent_offspring$media<-unlist(lapply(strsplit(as.character(parent_offspring$Diet),split="_"),"[",1))
parent_offspring$selection<-unlist(lapply(strsplit(as.character(parent_offspring$Diet),split="_"),"[",2))
noselected<-parent_offspring%>%filter(selection=="noselection")
noselected2<-noselected%>%filter(F0_parent_mean!=0)
noselected3<-noselected2%>%filter(F1_child_mean!=0)

x <- noselected3$F0_parent_mean
y <- noselected3$F1_child_mean
(h2 <-cor(x, y)^2) #heritability
## [1] 0.8442553
h2*s
## [1] -5.76896

Session info

##  setting  value                       
##  version  R version 3.5.3 (2019-03-11)
##  os       macOS Mojave 10.14.6        
##  system   x86_64, darwin15.6.0        
##  ui       X11                         
##  language (EN)                        
##  collate  en_US.UTF-8                 
##  ctype    en_US.UTF-8                 
##  tz       Asia/Tokyo                  
##  date     2019-10-03
package ondiskversion loadedversion path loadedpath attached is_base date source md5ok library
abind abind 1.4.5 1.4-5 /Users/sasha/Library/R/3.5/library/abind /Users/sasha/Library/R/3.5/library/abind FALSE FALSE 2016-07-21 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
acepack acepack 1.4.1 1.4.1 /Users/sasha/Library/R/3.5/library/acepack /Users/sasha/Library/R/3.5/library/acepack FALSE FALSE 2016-10-29 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
ade4 ade4 1.7.13 1.7-13 /Users/sasha/Library/R/3.5/library/ade4 /Users/sasha/Library/R/3.5/library/ade4 FALSE FALSE 2018-08-31 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
annotate annotate 1.60.1 1.60.1 /Users/sasha/Library/R/3.5/library/annotate /Users/sasha/Library/R/3.5/library/annotate FALSE FALSE 2019-03-07 Bioconductor NA /Users/sasha/Library/R/3.5/library
AnnotationDbi AnnotationDbi 1.44.0 1.44.0 /Users/sasha/Library/R/3.5/library/AnnotationDbi /Users/sasha/Library/R/3.5/library/AnnotationDbi FALSE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
ape ape 5.3 5.3 /Users/sasha/Library/R/3.5/library/ape /Users/sasha/Library/R/3.5/library/ape FALSE FALSE 2019-03-17 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
assertthat assertthat 0.2.1 0.2.1 /Users/sasha/Library/R/3.5/library/assertthat /Users/sasha/Library/R/3.5/library/assertthat FALSE FALSE 2019-03-21 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
backports backports 1.1.4 1.1.4 /Users/sasha/Library/R/3.5/library/backports /Users/sasha/Library/R/3.5/library/backports FALSE FALSE 2019-04-10 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
base64enc base64enc 0.1.3 0.1-3 /Users/sasha/Library/R/3.5/library/base64enc /Users/sasha/Library/R/3.5/library/base64enc FALSE FALSE 2015-07-28 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
bayestestR bayestestR 0.2.5 0.2.5 /Users/sasha/Library/R/3.5/library/bayestestR /Users/sasha/Library/R/3.5/library/bayestestR FALSE FALSE 2019-08-06 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
Biobase Biobase 2.42.0 2.42.0 /Users/sasha/Library/R/3.5/library/Biobase /Users/sasha/Library/R/3.5/library/Biobase TRUE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
BiocGenerics BiocGenerics 0.28.0 0.28.0 /Users/sasha/Library/R/3.5/library/BiocGenerics /Users/sasha/Library/R/3.5/library/BiocGenerics TRUE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
BiocParallel BiocParallel 1.16.6 1.16.6 /Users/sasha/Library/R/3.5/library/BiocParallel /Users/sasha/Library/R/3.5/library/BiocParallel TRUE FALSE 2019-02-17 Bioconductor NA /Users/sasha/Library/R/3.5/library
biomformat biomformat 1.10.1 1.10.1 /Users/sasha/Library/R/3.5/library/biomformat /Users/sasha/Library/R/3.5/library/biomformat FALSE FALSE 2019-01-04 Bioconductor NA /Users/sasha/Library/R/3.5/library
Biostrings Biostrings 2.50.2 2.50.2 /Users/sasha/Library/R/3.5/library/Biostrings /Users/sasha/Library/R/3.5/library/Biostrings FALSE FALSE 2019-01-03 Bioconductor NA /Users/sasha/Library/R/3.5/library
bit bit 1.1.14 1.1-14 /Users/sasha/Library/R/3.5/library/bit /Users/sasha/Library/R/3.5/library/bit FALSE FALSE 2018-05-29 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
bit64 bit64 0.9.7 0.9-7 /Users/sasha/Library/R/3.5/library/bit64 /Users/sasha/Library/R/3.5/library/bit64 FALSE FALSE 2017-05-08 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
bitops bitops 1.0.6 1.0-6 /Users/sasha/Library/R/3.5/library/bitops /Users/sasha/Library/R/3.5/library/bitops FALSE FALSE 2013-08-17 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
blob blob 1.2.0 1.2.0 /Users/sasha/Library/R/3.5/library/blob /Users/sasha/Library/R/3.5/library/blob FALSE FALSE 2019-07-09 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
boot boot 1.3.23 1.3-23 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/boot /Library/Frameworks/R.framework/Versions/3.5/Resources/library/boot FALSE FALSE 2019-07-05 CRAN (R 3.5.2) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
breakaway breakaway 4.6.8 4.6.8 /Users/sasha/Library/R/3.5/library/breakaway /Users/sasha/Library/R/3.5/library/breakaway TRUE FALSE 2019-06-10 Github () NA /Users/sasha/Library/R/3.5/library
broom broom 0.5.2 0.5.2 /Users/sasha/Library/R/3.5/library/broom /Users/sasha/Library/R/3.5/library/broom FALSE FALSE 2019-04-07 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
callr callr 3.3.1 3.3.1 /Users/sasha/Library/R/3.5/library/callr /Users/sasha/Library/R/3.5/library/callr FALSE FALSE 2019-07-18 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
carData carData 3.0.2 3.0-2 /Users/sasha/Library/R/3.5/library/carData /Users/sasha/Library/R/3.5/library/carData TRUE FALSE 2018-09-30 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
cellranger cellranger 1.1.0 1.1.0 /Users/sasha/Library/R/3.5/library/cellranger /Users/sasha/Library/R/3.5/library/cellranger FALSE FALSE 2016-07-27 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
checkmate checkmate 1.9.4 1.9.4 /Users/sasha/Library/R/3.5/library/checkmate /Users/sasha/Library/R/3.5/library/checkmate FALSE FALSE 2019-07-04 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
cli cli 1.1.0 1.1.0 /Users/sasha/Library/R/3.5/library/cli /Users/sasha/Library/R/3.5/library/cli FALSE FALSE 2019-03-19 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
cluster cluster 2.1.0 2.1.0 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/cluster /Library/Frameworks/R.framework/Versions/3.5/Resources/library/cluster FALSE FALSE 2019-06-19 CRAN (R 3.5.2) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
coda coda 0.19.3 0.19-3 /Users/sasha/Library/R/3.5/library/coda /Users/sasha/Library/R/3.5/library/coda FALSE FALSE 2019-07-05 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
codetools codetools 0.2.16 0.2-16 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/codetools /Library/Frameworks/R.framework/Versions/3.5/Resources/library/codetools FALSE FALSE 2018-12-24 CRAN (R 3.5.3) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
colorspace colorspace 1.4.1 1.4-1 /Users/sasha/Library/R/3.5/library/colorspace /Users/sasha/Library/R/3.5/library/colorspace FALSE FALSE 2019-03-18 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
crayon crayon 1.3.4 1.3.4 /Users/sasha/Library/R/3.5/library/crayon /Users/sasha/Library/R/3.5/library/crayon FALSE FALSE 2017-09-16 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
data.table data.table 1.12.2 1.12.2 /Users/sasha/Library/R/3.5/library/data.table /Users/sasha/Library/R/3.5/library/data.table FALSE FALSE 2019-04-07 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
DBI DBI 1.0.0 1.0.0 /Users/sasha/Library/R/3.5/library/DBI /Users/sasha/Library/R/3.5/library/DBI FALSE FALSE 2018-05-02 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
DelayedArray DelayedArray 0.8.0 0.8.0 /Users/sasha/Library/R/3.5/library/DelayedArray /Users/sasha/Library/R/3.5/library/DelayedArray TRUE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
desc desc 1.2.0 1.2.0 /Users/sasha/Library/R/3.5/library/desc /Users/sasha/Library/R/3.5/library/desc FALSE FALSE 2018-05-01 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
DESeq2 DESeq2 1.22.2 1.22.2 /Users/sasha/Library/R/3.5/library/DESeq2 /Users/sasha/Library/R/3.5/library/DESeq2 TRUE FALSE 2019-01-04 Bioconductor NA /Users/sasha/Library/R/3.5/library
devtools devtools 2.1.0 2.1.0 /Users/sasha/Library/R/3.5/library/devtools /Users/sasha/Library/R/3.5/library/devtools FALSE FALSE 2019-07-06 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
digest digest 0.6.20 0.6.20 /Users/sasha/Library/R/3.5/library/digest /Users/sasha/Library/R/3.5/library/digest FALSE FALSE 2019-07-04 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
DivNet DivNet 0.3.1 0.3.1 /Users/sasha/Library/R/3.5/library/DivNet /Users/sasha/Library/R/3.5/library/DivNet TRUE FALSE 2019-06-10 Github () NA /Users/sasha/Library/R/3.5/library
doParallel doParallel 1.0.15 1.0.15 /Users/sasha/Library/R/3.5/library/doParallel /Users/sasha/Library/R/3.5/library/doParallel FALSE FALSE 2019-08-02 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
doSNOW doSNOW 1.0.18 1.0.18 /Users/sasha/Library/R/3.5/library/doSNOW /Users/sasha/Library/R/3.5/library/doSNOW FALSE FALSE 2019-07-27 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
dplyr dplyr 0.8.3 0.8.3 /Users/sasha/Library/R/3.5/library/dplyr /Users/sasha/Library/R/3.5/library/dplyr TRUE FALSE 2019-07-04 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
effects effects 4.1.2 4.1-2 /Users/sasha/Library/R/3.5/library/effects /Users/sasha/Library/R/3.5/library/effects TRUE FALSE 2019-09-03 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
emmeans emmeans 1.4 1.4 /Users/sasha/Library/R/3.5/library/emmeans /Users/sasha/Library/R/3.5/library/emmeans FALSE FALSE 2019-08-01 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
estimability estimability 1.3 1.3 /Users/sasha/Library/R/3.5/library/estimability /Users/sasha/Library/R/3.5/library/estimability FALSE FALSE 2018-02-11 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
evaluate evaluate 0.14 0.14 /Users/sasha/Library/R/3.5/library/evaluate /Users/sasha/Library/R/3.5/library/evaluate FALSE FALSE 2019-05-28 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
forcats forcats 0.4.0 0.4.0 /Users/sasha/Library/R/3.5/library/forcats /Users/sasha/Library/R/3.5/library/forcats TRUE FALSE 2019-02-17 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
foreach foreach 1.4.7 1.4.7 /Users/sasha/Library/R/3.5/library/foreach /Users/sasha/Library/R/3.5/library/foreach FALSE FALSE 2019-07-27 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
foreign foreign 0.8.72 0.8-72 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/foreign /Library/Frameworks/R.framework/Versions/3.5/Resources/library/foreign FALSE FALSE 2019-08-02 CRAN (R 3.5.2) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
Formula Formula 1.2.3 1.2-3 /Users/sasha/Library/R/3.5/library/Formula /Users/sasha/Library/R/3.5/library/Formula FALSE FALSE 2018-05-03 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
fs fs 1.3.1 1.3.1 /Users/sasha/Library/R/3.5/library/fs /Users/sasha/Library/R/3.5/library/fs FALSE FALSE 2019-05-06 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
genefilter genefilter 1.64.0 1.64.0 /Users/sasha/Library/R/3.5/library/genefilter /Users/sasha/Library/R/3.5/library/genefilter FALSE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
geneplotter geneplotter 1.60.0 1.60.0 /Users/sasha/Library/R/3.5/library/geneplotter /Users/sasha/Library/R/3.5/library/geneplotter FALSE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
generics generics 0.0.2 0.0.2 /Users/sasha/Library/R/3.5/library/generics /Users/sasha/Library/R/3.5/library/generics FALSE FALSE 2018-11-29 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
GenomeInfoDb GenomeInfoDb 1.18.2 1.18.2 /Users/sasha/Library/R/3.5/library/GenomeInfoDb /Users/sasha/Library/R/3.5/library/GenomeInfoDb TRUE FALSE 2019-02-12 Bioconductor NA /Users/sasha/Library/R/3.5/library
GenomeInfoDbData GenomeInfoDbData 1.2.0 1.2.0 /Users/sasha/Library/R/3.5/library/GenomeInfoDbData /Users/sasha/Library/R/3.5/library/GenomeInfoDbData FALSE FALSE 2019-06-14 Bioconductor NA /Users/sasha/Library/R/3.5/library
GenomicRanges GenomicRanges 1.34.0 1.34.0 /Users/sasha/Library/R/3.5/library/GenomicRanges /Users/sasha/Library/R/3.5/library/GenomicRanges TRUE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
ggeffects ggeffects 0.12.0 0.12.0 /Users/sasha/Library/R/3.5/library/ggeffects /Users/sasha/Library/R/3.5/library/ggeffects FALSE FALSE 2019-09-03 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
ggplot2 ggplot2 3.2.1 3.2.1 /Users/sasha/Library/R/3.5/library/ggplot2 /Users/sasha/Library/R/3.5/library/ggplot2 TRUE FALSE 2019-08-10 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
ggrepel ggrepel 0.8.1 0.8.1 /Users/sasha/Library/R/3.5/library/ggrepel /Users/sasha/Library/R/3.5/library/ggrepel FALSE FALSE 2019-05-07 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
glmmTMB glmmTMB 0.2.3 0.2.3 /Users/sasha/Library/R/3.5/library/glmmTMB /Users/sasha/Library/R/3.5/library/glmmTMB FALSE FALSE 2019-01-11 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
glue glue 1.3.1 1.3.1 /Users/sasha/Library/R/3.5/library/glue /Users/sasha/Library/R/3.5/library/glue FALSE FALSE 2019-03-12 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
gridExtra gridExtra 2.3 2.3 /Users/sasha/Library/R/3.5/library/gridExtra /Users/sasha/Library/R/3.5/library/gridExtra TRUE FALSE 2017-09-09 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
gtable gtable 0.3.0 0.3.0 /Users/sasha/Library/R/3.5/library/gtable /Users/sasha/Library/R/3.5/library/gtable FALSE FALSE 2019-03-25 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
haven haven 2.1.1 2.1.1 /Users/sasha/Library/R/3.5/library/haven /Users/sasha/Library/R/3.5/library/haven FALSE FALSE 2019-07-04 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
Hmisc Hmisc 4.2.0 4.2-0 /Users/sasha/Library/R/3.5/library/Hmisc /Users/sasha/Library/R/3.5/library/Hmisc FALSE FALSE 2019-01-26 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
hms hms 0.5.1 0.5.1 /Users/sasha/Library/R/3.5/library/hms /Users/sasha/Library/R/3.5/library/hms FALSE FALSE 2019-08-23 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
htmlTable htmlTable 1.13.1 1.13.1 /Users/sasha/Library/R/3.5/library/htmlTable /Users/sasha/Library/R/3.5/library/htmlTable FALSE FALSE 2019-01-07 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
htmltools htmltools 0.3.6 0.3.6 /Users/sasha/Library/R/3.5/library/htmltools /Users/sasha/Library/R/3.5/library/htmltools FALSE FALSE 2017-04-28 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
htmlwidgets htmlwidgets 1.3 1.3 /Users/sasha/Library/R/3.5/library/htmlwidgets /Users/sasha/Library/R/3.5/library/htmlwidgets FALSE FALSE 2018-09-30 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
httr httr 1.4.1 1.4.1 /Users/sasha/Library/R/3.5/library/httr /Users/sasha/Library/R/3.5/library/httr FALSE FALSE 2019-08-05 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
igraph igraph 1.2.4.1 1.2.4.1 /Users/sasha/Library/R/3.5/library/igraph /Users/sasha/Library/R/3.5/library/igraph FALSE FALSE 2019-04-22 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
insight insight 0.4.1 0.4.1 /Users/sasha/Library/R/3.5/library/insight /Users/sasha/Library/R/3.5/library/insight FALSE FALSE 2019-07-24 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
IRanges IRanges 2.16.0 2.16.0 /Users/sasha/Library/R/3.5/library/IRanges /Users/sasha/Library/R/3.5/library/IRanges TRUE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
iterators iterators 1.0.12 1.0.12 /Users/sasha/Library/R/3.5/library/iterators /Users/sasha/Library/R/3.5/library/iterators FALSE FALSE 2019-07-26 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
jsonlite jsonlite 1.6 1.6 /Users/sasha/Library/R/3.5/library/jsonlite /Users/sasha/Library/R/3.5/library/jsonlite FALSE FALSE 2018-12-07 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
kableExtra kableExtra 1.1.0 1.1.0 /Users/sasha/Library/R/3.5/library/kableExtra /Users/sasha/Library/R/3.5/library/kableExtra TRUE FALSE 2019-03-16 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
knitr knitr 1.24 1.24 /Users/sasha/Library/R/3.5/library/knitr /Users/sasha/Library/R/3.5/library/knitr TRUE FALSE 2019-08-08 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
labeling labeling 0.3 0.3 /Users/sasha/Library/R/3.5/library/labeling /Users/sasha/Library/R/3.5/library/labeling FALSE FALSE 2014-08-23 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
lattice lattice 0.20.38 0.20-38 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/lattice /Library/Frameworks/R.framework/Versions/3.5/Resources/library/lattice TRUE FALSE 2018-11-04 CRAN (R 3.5.3) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
latticeExtra latticeExtra 0.6.28 0.6-28 /Users/sasha/Library/R/3.5/library/latticeExtra /Users/sasha/Library/R/3.5/library/latticeExtra FALSE FALSE 2016-02-09 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
lazyeval lazyeval 0.2.2 0.2.2 /Users/sasha/Library/R/3.5/library/lazyeval /Users/sasha/Library/R/3.5/library/lazyeval FALSE FALSE 2019-03-15 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
lme4 lme4 1.1.21 1.1-21 /Users/sasha/Library/R/3.5/library/lme4 /Users/sasha/Library/R/3.5/library/lme4 TRUE FALSE 2019-03-05 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
locfit locfit 1.5.9.1 1.5-9.1 /Users/sasha/Library/R/3.5/library/locfit /Users/sasha/Library/R/3.5/library/locfit FALSE FALSE 2013-04-20 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
lubridate lubridate 1.7.4 1.7.4 /Users/sasha/Library/R/3.5/library/lubridate /Users/sasha/Library/R/3.5/library/lubridate FALSE FALSE 2018-04-11 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
magrittr magrittr 1.5 1.5 /Users/sasha/Library/R/3.5/library/magrittr /Users/sasha/Library/R/3.5/library/magrittr FALSE FALSE 2014-11-22 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
MASS MASS 7.3.51.4 7.3-51.4 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/MASS /Library/Frameworks/R.framework/Versions/3.5/Resources/library/MASS FALSE FALSE 2019-03-31 CRAN (R 3.5.2) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
Matrix Matrix 1.2.17 1.2-17 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/Matrix /Library/Frameworks/R.framework/Versions/3.5/Resources/library/Matrix TRUE FALSE 2019-03-22 CRAN (R 3.5.2) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
matrixStats matrixStats 0.54.0 0.54.0 /Users/sasha/Library/R/3.5/library/matrixStats /Users/sasha/Library/R/3.5/library/matrixStats TRUE FALSE 2018-07-23 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
memoise memoise 1.1.0 1.1.0 /Users/sasha/Library/R/3.5/library/memoise /Users/sasha/Library/R/3.5/library/memoise FALSE FALSE 2017-04-21 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
mgcv mgcv 1.8.28 1.8-28 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/mgcv /Library/Frameworks/R.framework/Versions/3.5/Resources/library/mgcv FALSE FALSE 2019-03-21 CRAN (R 3.5.2) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
minqa minqa 1.2.4 1.2.4 /Users/sasha/Library/R/3.5/library/minqa /Users/sasha/Library/R/3.5/library/minqa FALSE FALSE 2014-10-09 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
mitools mitools 2.4 2.4 /Users/sasha/Library/R/3.5/library/mitools /Users/sasha/Library/R/3.5/library/mitools FALSE FALSE 2019-04-26 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
mnormt mnormt 1.5.5 1.5-5 /Users/sasha/Library/R/3.5/library/mnormt /Users/sasha/Library/R/3.5/library/mnormt FALSE FALSE 2016-10-15 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
modelr modelr 0.1.5 0.1.5 /Users/sasha/Library/R/3.5/library/modelr /Users/sasha/Library/R/3.5/library/modelr FALSE FALSE 2019-08-08 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
multtest multtest 2.38.0 2.38.0 /Users/sasha/Library/R/3.5/library/multtest /Users/sasha/Library/R/3.5/library/multtest FALSE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
munsell munsell 0.5.0 0.5.0 /Users/sasha/Library/R/3.5/library/munsell /Users/sasha/Library/R/3.5/library/munsell FALSE FALSE 2018-06-12 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
mvnfast mvnfast 0.2.5 0.2.5 /Users/sasha/Library/R/3.5/library/mvnfast /Users/sasha/Library/R/3.5/library/mvnfast FALSE FALSE 2018-01-31 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
mvtnorm mvtnorm 1.0.11 1.0-11 /Users/sasha/Library/R/3.5/library/mvtnorm /Users/sasha/Library/R/3.5/library/mvtnorm FALSE FALSE 2019-06-19 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
nlme nlme 3.1.141 3.1-141 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/nlme /Library/Frameworks/R.framework/Versions/3.5/Resources/library/nlme TRUE FALSE 2019-08-01 CRAN (R 3.5.2) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
nloptr nloptr 1.2.1 1.2.1 /Users/sasha/Library/R/3.5/library/nloptr /Users/sasha/Library/R/3.5/library/nloptr FALSE FALSE 2018-10-03 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
nnet nnet 7.3.12 7.3-12 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/nnet /Library/Frameworks/R.framework/Versions/3.5/Resources/library/nnet FALSE FALSE 2016-02-02 CRAN (R 3.5.3) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
performance performance 0.3.0 0.3.0 /Users/sasha/Library/R/3.5/library/performance /Users/sasha/Library/R/3.5/library/performance FALSE FALSE 2019-08-05 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
permute permute 0.9.5 0.9-5 /Users/sasha/Library/R/3.5/library/permute /Users/sasha/Library/R/3.5/library/permute TRUE FALSE 2019-03-12 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
phyloseq phyloseq 1.26.1 1.26.1 /Users/sasha/Library/R/3.5/library/phyloseq /Users/sasha/Library/R/3.5/library/phyloseq TRUE FALSE 2019-01-04 Bioconductor NA /Users/sasha/Library/R/3.5/library
pillar pillar 1.4.2 1.4.2 /Users/sasha/Library/R/3.5/library/pillar /Users/sasha/Library/R/3.5/library/pillar FALSE FALSE 2019-06-29 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
pkgbuild pkgbuild 1.0.5 1.0.5 /Users/sasha/Library/R/3.5/library/pkgbuild /Users/sasha/Library/R/3.5/library/pkgbuild FALSE FALSE 2019-08-26 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
pkgconfig pkgconfig 2.0.2 2.0.2 /Users/sasha/Library/R/3.5/library/pkgconfig /Users/sasha/Library/R/3.5/library/pkgconfig FALSE FALSE 2018-08-16 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
pkgload pkgload 1.0.2 1.0.2 /Users/sasha/Library/R/3.5/library/pkgload /Users/sasha/Library/R/3.5/library/pkgload FALSE FALSE 2018-10-29 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
plyr plyr 1.8.4 1.8.4 /Users/sasha/Library/R/3.5/library/plyr /Users/sasha/Library/R/3.5/library/plyr FALSE FALSE 2016-06-08 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
prettyunits prettyunits 1.0.2 1.0.2 /Users/sasha/Library/R/3.5/library/prettyunits /Users/sasha/Library/R/3.5/library/prettyunits FALSE FALSE 2015-07-13 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
processx processx 3.4.1 3.4.1 /Users/sasha/Library/R/3.5/library/processx /Users/sasha/Library/R/3.5/library/processx FALSE FALSE 2019-07-18 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
ps ps 1.3.0 1.3.0 /Users/sasha/Library/R/3.5/library/ps /Users/sasha/Library/R/3.5/library/ps FALSE FALSE 2018-12-21 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
psych psych 1.8.12 1.8.12 /Users/sasha/Library/R/3.5/library/psych /Users/sasha/Library/R/3.5/library/psych FALSE FALSE 2019-01-12 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
purrr purrr 0.3.2 0.3.2 /Users/sasha/Library/R/3.5/library/purrr /Users/sasha/Library/R/3.5/library/purrr TRUE FALSE 2019-03-15 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
qiime2R qiime2R 0.99.11 0.99.11 /Users/sasha/Library/R/3.5/library/qiime2R /Users/sasha/Library/R/3.5/library/qiime2R TRUE FALSE 2019-06-10 Github () NA /Users/sasha/Library/R/3.5/library
R6 R6 2.4.0 2.4.0 /Users/sasha/Library/R/3.5/library/R6 /Users/sasha/Library/R/3.5/library/R6 FALSE FALSE 2019-02-14 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
RColorBrewer RColorBrewer 1.1.2 1.1-2 /Users/sasha/Library/R/3.5/library/RColorBrewer /Users/sasha/Library/R/3.5/library/RColorBrewer TRUE FALSE 2014-12-07 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
Rcpp Rcpp 1.0.2 1.0.2 /Users/sasha/Library/R/3.5/library/Rcpp /Users/sasha/Library/R/3.5/library/Rcpp FALSE FALSE 2019-07-25 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
RCurl RCurl 1.95.4.12 1.95-4.12 /Users/sasha/Library/R/3.5/library/RCurl /Users/sasha/Library/R/3.5/library/RCurl FALSE FALSE 2019-03-04 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
readr readr 1.3.1 1.3.1 /Users/sasha/Library/R/3.5/library/readr /Users/sasha/Library/R/3.5/library/readr TRUE FALSE 2018-12-21 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
readxl readxl 1.3.1 1.3.1 /Users/sasha/Library/R/3.5/library/readxl /Users/sasha/Library/R/3.5/library/readxl FALSE FALSE 2019-03-13 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
remotes remotes 2.1.0 2.1.0 /Users/sasha/Library/R/3.5/library/remotes /Users/sasha/Library/R/3.5/library/remotes FALSE FALSE 2019-06-24 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
reshape2 reshape2 1.4.3 1.4.3 /Users/sasha/Library/R/3.5/library/reshape2 /Users/sasha/Library/R/3.5/library/reshape2 FALSE FALSE 2017-12-11 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
rhdf5 rhdf5 2.26.2 2.26.2 /Users/sasha/Library/R/3.5/library/rhdf5 /Users/sasha/Library/R/3.5/library/rhdf5 FALSE FALSE 2019-01-02 Bioconductor NA /Users/sasha/Library/R/3.5/library
Rhdf5lib Rhdf5lib 1.4.3 1.4.3 /Users/sasha/Library/R/3.5/library/Rhdf5lib /Users/sasha/Library/R/3.5/library/Rhdf5lib FALSE FALSE 2019-03-25 Bioconductor NA /Users/sasha/Library/R/3.5/library
rlang rlang 0.4.0 0.4.0 /Users/sasha/Library/R/3.5/library/rlang /Users/sasha/Library/R/3.5/library/rlang FALSE FALSE 2019-06-25 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
rmarkdown rmarkdown 1.15 1.15 /Users/sasha/Library/R/3.5/library/rmarkdown /Users/sasha/Library/R/3.5/library/rmarkdown FALSE FALSE 2019-08-21 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
rpart rpart 4.1.15 4.1-15 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/rpart /Library/Frameworks/R.framework/Versions/3.5/Resources/library/rpart FALSE FALSE 2019-04-12 CRAN (R 3.5.2) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
rprojroot rprojroot 1.3.2 1.3-2 /Users/sasha/Library/R/3.5/library/rprojroot /Users/sasha/Library/R/3.5/library/rprojroot FALSE FALSE 2018-01-03 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
RSQLite RSQLite 2.1.2 2.1.2 /Users/sasha/Library/R/3.5/library/RSQLite /Users/sasha/Library/R/3.5/library/RSQLite FALSE FALSE 2019-07-24 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
rstudioapi rstudioapi 0.10 0.10 /Users/sasha/Library/R/3.5/library/rstudioapi /Users/sasha/Library/R/3.5/library/rstudioapi FALSE FALSE 2019-03-19 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
rvest rvest 0.3.4 0.3.4 /Users/sasha/Library/R/3.5/library/rvest /Users/sasha/Library/R/3.5/library/rvest FALSE FALSE 2019-05-15 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
S4Vectors S4Vectors 0.20.1 0.20.1 /Users/sasha/Library/R/3.5/library/S4Vectors /Users/sasha/Library/R/3.5/library/S4Vectors TRUE FALSE 2018-11-09 Bioconductor NA /Users/sasha/Library/R/3.5/library
scales scales 1.0.0 1.0.0 /Users/sasha/Library/R/3.5/library/scales /Users/sasha/Library/R/3.5/library/scales TRUE FALSE 2018-08-09 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
sessioninfo sessioninfo 1.1.1 1.1.1 /Users/sasha/Library/R/3.5/library/sessioninfo /Users/sasha/Library/R/3.5/library/sessioninfo FALSE FALSE 2018-11-05 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
sjlabelled sjlabelled 1.1.0 1.1.0 /Users/sasha/Library/R/3.5/library/sjlabelled /Users/sasha/Library/R/3.5/library/sjlabelled FALSE FALSE 2019-06-06 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
sjmisc sjmisc 2.8.1 2.8.1 /Users/sasha/Library/R/3.5/library/sjmisc /Users/sasha/Library/R/3.5/library/sjmisc FALSE FALSE 2019-06-17 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
sjPlot sjPlot 2.7.0 2.7.0 /Users/sasha/Library/R/3.5/library/sjPlot /Users/sasha/Library/R/3.5/library/sjPlot TRUE FALSE 2019-08-05 Github () NA /Users/sasha/Library/R/3.5/library
sjstats sjstats 0.17.5 0.17.5 /Users/sasha/Library/R/3.5/library/sjstats /Users/sasha/Library/R/3.5/library/sjstats FALSE FALSE 2019-06-04 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
snow snow 0.4.3 0.4-3 /Users/sasha/Library/R/3.5/library/snow /Users/sasha/Library/R/3.5/library/snow FALSE FALSE 2018-09-14 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
stringi stringi 1.4.3 1.4.3 /Users/sasha/Library/R/3.5/library/stringi /Users/sasha/Library/R/3.5/library/stringi FALSE FALSE 2019-03-12 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
stringr stringr 1.4.0 1.4.0 /Users/sasha/Library/R/3.5/library/stringr /Users/sasha/Library/R/3.5/library/stringr TRUE FALSE 2019-02-10 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
SummarizedExperiment SummarizedExperiment 1.12.0 1.12.0 /Users/sasha/Library/R/3.5/library/SummarizedExperiment /Users/sasha/Library/R/3.5/library/SummarizedExperiment TRUE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
survey survey 3.36 3.36 /Users/sasha/Library/R/3.5/library/survey /Users/sasha/Library/R/3.5/library/survey FALSE FALSE 2019-04-27 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
survival survival 2.44.1.1 2.44-1.1 /Library/Frameworks/R.framework/Versions/3.5/Resources/library/survival /Library/Frameworks/R.framework/Versions/3.5/Resources/library/survival FALSE FALSE 2019-04-01 CRAN (R 3.5.2) NA /Library/Frameworks/R.framework/Versions/3.5/Resources/library
testthat testthat 2.2.1 2.2.1 /Users/sasha/Library/R/3.5/library/testthat /Users/sasha/Library/R/3.5/library/testthat FALSE FALSE 2019-07-25 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
tibble tibble 2.1.3 2.1.3 /Users/sasha/Library/R/3.5/library/tibble /Users/sasha/Library/R/3.5/library/tibble TRUE FALSE 2019-06-06 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
tidyr tidyr 0.8.3 0.8.3 /Users/sasha/Library/R/3.5/library/tidyr /Users/sasha/Library/R/3.5/library/tidyr TRUE FALSE 2019-03-01 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
tidyselect tidyselect 0.2.5 0.2.5 /Users/sasha/Library/R/3.5/library/tidyselect /Users/sasha/Library/R/3.5/library/tidyselect FALSE FALSE 2018-10-11 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
tidyverse tidyverse 1.2.1 1.2.1 /Users/sasha/Library/R/3.5/library/tidyverse /Users/sasha/Library/R/3.5/library/tidyverse TRUE FALSE 2017-11-14 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
TMB TMB 1.7.15 1.7.15 /Users/sasha/Library/R/3.5/library/TMB /Users/sasha/Library/R/3.5/library/TMB FALSE FALSE 2018-11-09 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
usethis usethis 1.5.1 1.5.1 /Users/sasha/Library/R/3.5/library/usethis /Users/sasha/Library/R/3.5/library/usethis FALSE FALSE 2019-07-04 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
vctrs vctrs 0.2.0 0.2.0 /Users/sasha/Library/R/3.5/library/vctrs /Users/sasha/Library/R/3.5/library/vctrs FALSE FALSE 2019-07-05 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
vegan vegan 2.5.6 2.5-6 /Users/sasha/Library/R/3.5/library/vegan /Users/sasha/Library/R/3.5/library/vegan TRUE FALSE 2019-09-01 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
viridisLite viridisLite 0.3.0 0.3.0 /Users/sasha/Library/R/3.5/library/viridisLite /Users/sasha/Library/R/3.5/library/viridisLite FALSE FALSE 2018-02-01 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
webshot webshot 0.5.1 0.5.1 /Users/sasha/Library/R/3.5/library/webshot /Users/sasha/Library/R/3.5/library/webshot FALSE FALSE 2018-09-28 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
withr withr 2.1.2 2.1.2 /Users/sasha/Library/R/3.5/library/withr /Users/sasha/Library/R/3.5/library/withr FALSE FALSE 2018-03-15 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
xfun xfun 0.9 0.9 /Users/sasha/Library/R/3.5/library/xfun /Users/sasha/Library/R/3.5/library/xfun FALSE FALSE 2019-08-21 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
XML XML 3.98.1.20 3.98-1.20 /Users/sasha/Library/R/3.5/library/XML /Users/sasha/Library/R/3.5/library/XML FALSE FALSE 2019-06-06 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
xml2 xml2 1.2.2 1.2.2 /Users/sasha/Library/R/3.5/library/xml2 /Users/sasha/Library/R/3.5/library/xml2 FALSE FALSE 2019-08-09 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
xtable xtable 1.8.4 1.8-4 /Users/sasha/Library/R/3.5/library/xtable /Users/sasha/Library/R/3.5/library/xtable FALSE FALSE 2019-04-21 CRAN (R 3.5.2) NA /Users/sasha/Library/R/3.5/library
XVector XVector 0.22.0 0.22.0 /Users/sasha/Library/R/3.5/library/XVector /Users/sasha/Library/R/3.5/library/XVector FALSE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library
yaml yaml 2.2.0 2.2.0 /Users/sasha/Library/R/3.5/library/yaml /Users/sasha/Library/R/3.5/library/yaml FALSE FALSE 2018-07-25 CRAN (R 3.5.3) NA /Users/sasha/Library/R/3.5/library
zeallot zeallot 0.1.0 0.1.0 /Users/sasha/Library/R/3.5/library/zeallot /Users/sasha/Library/R/3.5/library/zeallot FALSE FALSE 2018-01-28 CRAN (R 3.5.0) NA /Users/sasha/Library/R/3.5/library
zlibbioc zlibbioc 1.28.0 1.28.0 /Users/sasha/Library/R/3.5/library/zlibbioc /Users/sasha/Library/R/3.5/library/zlibbioc FALSE FALSE 2018-10-30 Bioconductor NA /Users/sasha/Library/R/3.5/library