generating the correct format for all the fly eclosion time files-
library(knitr)
library(kableExtra)
library(gridExtra)
library(scales)
library(RColorBrewer)
library(tidyverse) #dplyr package included
library(stringr)
library(lme4)
library(nlme)
library(effects)
library(DESeq2)
library(qiime2R)
library(phyloseq)
library(DivNet)
library(vegan)
library(sjPlot) # mixed effects table summary
theme_set(theme_minimal() + theme(legend.position = "bottom", axis.title = element_text(size = 20), axis.text = element_text(size = 10), strip.text = element_text(size = 20)))
flydata <- read_csv("data/flydata.csv") %>% mutate(id = paste(diet, selection, round, line, vial), time = emergence_time, replicate = paste(diet, selection, round, line))
## Parsed with column specification:
## cols(
## emergence_time = col_double(),
## round = col_double(),
## diet = col_character(),
## selection = col_character(),
## line = col_double(),
## vial = col_character()
## )
flydataFactors <- flydata %>% mutate(day = ifelse(time<225, 1, ifelse(time<240, 2, ifelse(time<270, 3, 4)))) %>% as.data.frame()
flydataFactors$selection <- factor(flydataFactors$selection)
flydataFactors$diet <- factor(flydataFactors$diet)
mod <- lmer(time ~ round * diet * selection + (1|line:replicate), data = flydata )
hist(resid(mod))
tab_model(mod, show.icc = FALSE, show.re.var = FALSE, pred.labels = c("Intercept (High-sugar diet, No-selection control)", "Selection cycle", "No-sugar diet", "Selection treatment", "Selection cycle × No-sugar diet", "Selection cycle × Selection treatment", "No-sugar diet × Selection treatment", "Selection cycle × No-sugar diet× Selection treatment"))
 | time | ||
---|---|---|---|
Predictors | Estimates | CI | p |
Intercept (High-sugar diet, No-selection control) | 292.96 | 288.36 – 297.57 | <0.001 |
Selection cycle | -2.59 | -3.95 – -1.23 | <0.001 |
No-sugar diet | -50.00 | -56.29 – -43.70 | <0.001 |
Selection treatment | 3.58 | -3.21 – 10.37 | 0.302 |
Selection cycle × No-sugar diet | 0.81 | -1.06 – 2.68 | 0.397 |
Selection cycle × Selection treatment | -0.85 | -2.83 – 1.14 | 0.402 |
No-sugar diet × Selection treatment | -1.52 | -10.57 – 7.53 | 0.742 |
Selection cycle × No-sugar diet× Selection treatment | 0.65 | -2.03 – 3.33 | 0.634 |
N line | 10 | ||
N replicate | 199 | ||
Observations | 10850 | ||
Marginal R2 / Conditional R2 | 0.779 / 0.834 |
effect(term="round:selection", xlevels=list(selection=c("selection","noselection")), mod=mod) %>% as.data.frame() %>% ggplot(aes(round,fit,color=selection))+geom_line()
## NOTE: round:selection is not a high-order term in the model
effect(term="round:diet", xlevels=list(diet=c("control","nsd")), mod=mod) %>% as.data.frame() %>% ggplot(aes(round,fit,color=diet))+geom_line()
## NOTE: round:diet is not a high-order term in the model
effect(term="round:diet:selection", xlevels=list(selection=c("selection","noselection"),diet=c("control","nsd")), mod=mod) %>% as.data.frame()%>%
ggplot(aes(round,fit,color=selection,linetype=diet))+geom_line()
diet_labeller <- function(variable, value) {
diet_names <- list('nsd'='No-sugar diet', 'hsd'='High-sugar diet')
selection_names <- list('selection'='Selection', 'noselection'='No Selection')
if (variable == 'selection')
return(selection_names[value])
else if (variable == 'diet')
return(diet_names[value])
else
return(as.character(value))
}
effect(term="round:diet:selection", xlevels=list(selection=c("selection","noselection"),diet=c("control","nsd")), mod=mod) %>%
as.data.frame() %>%
left_join(flydata, by = c("round", "diet", "selection")) %>%
ggplot(aes(round-1, fit, color=selection)) + geom_boxplot(aes(round-1, time, group = interaction(round,selection)), alpha = 0.1) +
geom_line() + geom_ribbon(aes(ymin=lower,ymax=upper, linetype = NA), alpha=0.3) +
facet_grid(diet~., scales="free", labeller=diet_labeller) +
scale_color_manual( labels = c("Control", "Selection"), values = c("dodgerblue", "orange")) + ylab("Eclosion time (hours)") + xlab("Selection cycle") + guides(alpha = F, color=guide_legend(override.aes=list(fill=NA)), legend.title=element_blank())
## Warning: Column `diet` joining factor and character vector, coercing into
## character vector
## Warning: Column `selection` joining factor and character vector, coercing
## into character vector
## Warning: The labeller API has been updated. Labellers taking `variable`and
## `value` arguments are now deprecated. See labellers documentation.
effect(xlevels=list(round=c(1,5)), term="round:diet", mod=mod) %>% as.data.frame()
## NOTE: round:diet is not a high-order term in the model
## round diet fit se lower upper
## 1 1 hsd 291.7926 1.287873 289.2682 294.3171
## 2 5 hsd 279.6747 1.165651 277.3898 281.9595
## 3 1 nsd 242.1527 1.126594 239.9444 244.3610
## 4 5 nsd 234.6194 1.120892 232.4222 236.8165
ggsave("figures/modeFit.pdf", height=7, width =5)
ggplot(flydataFactors, aes(day, fill=selection))+geom_histogram(stat="count", position="dodge") +facet_grid(.~diet)
## Warning: Ignoring unknown parameters: binwidth, bins, pad
tradeoff <- flydata %>% group_by(diet, round, selection, line, replicate) %>% summarize(time = mean(time), flies = n())
tradeoff %>% filter(round == 5) %>% ggplot(aes(time, flies, color = selection, shape = as.factor(round))) + geom_point() + facet_grid(.~diet, scales = "free") + stat_smooth(method="lm", aes(group = 1))
Selection has no effect on fly emergence, though emergence time decreases throughout the experiment in any case.
In round 4 there are no flies eclosing in the fourth day. Maybe some problem? Does this affect results?
mod2 <- lme(time ~ round * diet * selection , random=~1|line/replicate, method="REML", data = flydata %>% filter(round != 4))
summary(mod2)
## Linear mixed-effects model fit by REML
## Data: flydata %>% filter(round != 4)
## AIC BIC logLik
## 75772.98 75852.16 -37875.49
##
## Random effects:
## Formula: ~1 | line
## (Intercept)
## StdDev: 0.0183111
##
## Formula: ~1 | replicate %in% line
## (Intercept) Residual
## StdDev: 6.227346 10.92282
##
## Fixed effects: time ~ round * diet * selection
## Value Std.Error DF t-value
## (Intercept) 292.13191 2.358482 9727 123.86438
## round -1.75222 0.728942 142 -2.40379
## dietnsd -49.72051 3.223359 142 -15.42506
## selectionselection 3.51368 3.473564 142 1.01155
## round:dietnsd 0.51087 1.009733 142 0.50595
## round:selectionselection -0.80158 1.057964 142 -0.75766
## dietnsd:selectionselection -0.65678 4.630908 142 -0.14182
## round:dietnsd:selectionselection -0.18434 1.440149 142 -0.12800
## p-value
## (Intercept) 0.0000
## round 0.0175
## dietnsd 0.0000
## selectionselection 0.3135
## round:dietnsd 0.6137
## round:selectionselection 0.4499
## dietnsd:selectionselection 0.8874
## round:dietnsd:selectionselection 0.8983
## Correlation:
## (Intr) round ditnsd slctns rnd:dt rnd:sl
## round -0.895
## dietnsd -0.732 0.655
## selectionselection -0.679 0.608 0.497
## round:dietnsd 0.646 -0.722 -0.890 -0.439
## round:selectionselection 0.617 -0.689 -0.451 -0.901 0.497
## dietnsd:selectionselection 0.509 -0.456 -0.696 -0.750 0.620 0.676
## round:dietnsd:selectionselection -0.453 0.506 0.624 0.662 -0.701 -0.735
## dtnsd:
## round
## dietnsd
## selectionselection
## round:dietnsd
## round:selectionselection
## dietnsd:selectionselection
## round:dietnsd:selectionselection -0.892
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -5.12947950 -0.76200648 -0.09791744 0.81577919 4.72341589
##
## Number of Observations: 9886
## Number of Groups:
## line replicate %in% line
## 10 159
The model is robust to dropping this round entirely
otus <- read_qza("data/table.qza")
taxonomy <- read_qza("data/taxonomy.qza")
tree<-read_qza("data/rooted-tree.qza")
taxonomy<-read_qza("data/taxonomy.qza")
tax_table <- data.frame(taxon = as.character(taxonomy$data$Taxon)) %>% separate(taxon, c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species"), sep = ";") %>% mutate_all(funs(gsub(".*__", "", .)))
## Warning: Expected 7 pieces. Additional pieces discarded in 73 rows [4, 9,
## 23, 40, 63, 70, 79, 83, 89, 93, 107, 108, 109, 111, 119, 120, 123, 126,
## 130, 133, ...].
## Warning: Expected 7 pieces. Missing pieces filled with `NA` in 445 rows [1,
## 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, ...].
## Warning: funs() is soft deprecated as of dplyr 0.8.0
## Please use a list of either functions or lambdas:
##
## # Simple named list:
## list(mean = mean, median = median)
##
## # Auto named with `tibble::lst()`:
## tibble::lst(mean, median)
##
## # Using lambdas
## list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once per session.
rownames(tax_table) <- taxonomy$data$Feature.ID
tax_table <- as.matrix(tax_table)
# loading metadata
metadata <- read.table("data/metadata.txt", sep='\t', header=T, row.names = 1, comment="")
# create a bunch of category columns for divnet and append phenotypic data
metadata <- metadata %>%
mutate( sample_names = rownames(metadata),
round = round - 1,
roundSelection = paste(round, selection),
roundSelectionDiet = paste(round, selection, diet),
id = paste(diet, selection, round, line, vial),
line = factor(line)) %>%
left_join(flydata %>% group_by(id) %>% summarize(time = mean(time)))
rownames(metadata) <- metadata$sample_names
# make final product
microbedat <- phyloseq(otu_table(otus$data, taxa_are_rows = T), phy_tree(tree$data), tax_table(tax_table), sample_data(metadata))
These are not super-useful, but highlight the difference between diets
abundantClasses <- psmelt(microbedat) %>% group_by(Genus) %>% summarize(frac = n() / nrow(.)) %>% filter(frac > 0.01) %>% na.omit() %>% pull(Genus)
#https://personal.sron.nl/~pault/data/colourschemes.pdf
mycolsBright <- c( "Acetobacter" = "#4477AA", "Acinetobacter" = "#66CCEE", "Lactobacillus" = "#228833" , "Pseudomonas" = "#CCBB44", "Staphylococcus" = "#EE6677")
psmelt(microbedat) %>%filter(Genus %in% abundantClasses) %>% ggplot(aes_string(x = "round", y = "Abundance", fill = "Genus")) + geom_bar(stat = "identity", position = "fill") + theme(axis.text.x = element_text(angle = 0, hjust = 0), legend.text=element_text(size=rel(1)), legend.title=element_blank()) + scale_y_sqrt() + ylab(expression(sqrt("Fraction of community"))) + xlab("Selection cycle") + facet_grid(diet~selection, scales="free", labeller=diet_labeller) + scale_fill_manual(values = mycolsBright)
ggsave("figures/barplot.pdf", height = 7, width = 7)
divnet_all <- divnet(tax_glom(microbedat, taxrank = "Genus"), X = "roundSelectionDiet", ncores = 20)
divnet_summary <- divnet_all$shannon %>% summary %>% left_join(metadata) %>% group_by(roundSelectionDiet) %>% summarize(alpha = estimate[1], lower = lower[1], upper = upper[1], round = round[1], selection = selection[1], diet = diet[1])
divnet_summary %>% ggplot(aes(selection, alpha, color = selection)) + geom_point() + geom_linerange(aes(ymin = lower, ymax = upper)) + facet_grid(diet~round, scales = "free") + theme_minimal() + theme(axis.text.x=element_blank()) + xlab("Round of evolution") + guides(color = F)
ggsave("figures/divnet.pdf")
## Saving 5 x 5 in image
(p <- plot_richness(microbedat, "round", measures = "Shannon", color = "selection") + facet_grid(diet~., scales = "free_y") + stat_smooth(method="lm") + scale_color_manual(name = "Selection", labels = c("Control", "Selection"), values = c("dodgerblue", "orange")) + ylab("Shannon diversity") + xlab("Selection cycle") + theme(legend.title=element_blank(), axis.text.x = element_text(angle = 0, hjust = 0)) )
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided does not have
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
tab_model(lm(value ~ diet*round, data = p$data), pred.labels = c("Intercept (High-sugar diet)", "No-sugar diet", "Selection cycle", "Selection cycle × No-sugar diet"))
 | value | ||
---|---|---|---|
Predictors | Estimates | CI | p |
Intercept (High-sugar diet) | 0.04 | -0.06 – 0.15 | 0.420 |
No-sugar diet | 0.17 | 0.02 – 0.32 | 0.031 |
Selection cycle | 0.02 | -0.02 – 0.06 | 0.353 |
Selection cycle × No-sugar diet | 0.20 | 0.14 – 0.26 | <0.001 |
Observations | 58 | ||
R2 / R2 adjusted | 0.833 / 0.824 |
ggsave("figures/shannon.pdf", height = 6, width = 6)
d = UniFrac(tax_glom(microbedat, taxrank = "Genus"))
d.mds <- metaMDS(d, zerodist=ignore)
## Run 0 stress 0.1661259
## Run 1 stress 0.1661293
## ... Procrustes: rmse 0.0004967718 max resid 0.00245224
## ... Similar to previous best
## Run 2 stress 0.1773121
## Run 3 stress 0.1662344
## ... Procrustes: rmse 0.00521738 max resid 0.02349514
## Run 4 stress 0.1775354
## Run 5 stress 0.1826861
## Run 6 stress 0.1957775
## Run 7 stress 0.177312
## Run 8 stress 0.1662322
## ... Procrustes: rmse 0.005109491 max resid 0.02377291
## Run 9 stress 0.1772646
## Run 10 stress 0.1661298
## ... Procrustes: rmse 0.003428709 max resid 0.02111954
## Run 11 stress 0.1890769
## Run 12 stress 0.1661294
## ... Procrustes: rmse 0.0009662116 max resid 0.002815028
## ... Similar to previous best
## Run 13 stress 0.1957786
## Run 14 stress 0.1662543
## ... Procrustes: rmse 0.003715019 max resid 0.02332357
## Run 15 stress 0.1661258
## ... New best solution
## ... Procrustes: rmse 0.0003046658 max resid 0.0009580474
## ... Similar to previous best
## Run 16 stress 0.1662541
## ... Procrustes: rmse 0.003707549 max resid 0.02341273
## Run 17 stress 0.1755086
## Run 18 stress 0.1661322
## ... Procrustes: rmse 0.003473376 max resid 0.02142207
## Run 19 stress 0.1750021
## Run 20 stress 0.1661263
## ... Procrustes: rmse 0.0004474407 max resid 0.001424323
## ... Similar to previous best
## *** Solution reached
scrs <- cbind(metadata, data.frame(MDS1 = d.mds$points[,1], MDS2 = d.mds$points[,2]))
cent <- cbind(metadata, data.frame(MDS1 = d.mds$points[,1], MDS2 = d.mds$points[,2])) %>% aggregate(cbind(MDS1, MDS2) ~ diet + round + selection, data = ., FUN = mean)
segs <- merge(scrs, setNames(cent, c('diet', 'round','selection' ,'oNMDS1','oNMDS2')),
by = c('diet', 'round', 'selection'), sort = FALSE)
ggplot(scrs, aes(x = MDS1, y = MDS2, shape = selection, color = factor(round))) +
facet_wrap(~diet) + scale_colour_brewer(palette = "YlOrRd") +
geom_segment(data = segs,
mapping = aes(xend = oNMDS1, yend = oNMDS2)) + # spiders
geom_point(data = cent, size = 3) + # centroids
geom_point() + # sample scores
coord_fixed() # same axis scaling
(microbes.adonis <- adonis2(d ~ diet * selection * round, as(sample_data(microbedat), "data.frame"), permutations = 10000, strata = line))
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
##
## adonis2(formula = d ~ diet * selection * round, data = as(sample_data(microbedat), "data.frame"), permutations = 10000, strata = line)
## Df SumOfSqs R2 F Pr(>F)
## diet 1 2.0683 0.21845 16.6231 9.999e-05 ***
## selection 1 0.0594 0.00627 0.4771 0.8018
## round 1 0.2174 0.02296 1.7469 0.1220
## diet:selection 1 0.2006 0.02119 1.6121 0.1566
## diet:round 1 0.3981 0.04205 3.1994 0.0108 *
## selection:round 1 0.2119 0.02238 1.7029 0.1327
## diet:selection:round 1 0.0912 0.00963 0.7330 0.5859
## Residual 50 6.2213 0.65708
## Total 57 9.4682 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(betadisper(d, sample_data(microbedat)$diet))
## Warning in betadisper(d, sample_data(microbedat)$diet): some squared
## distances are negative and changed to zero
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 1 0.20142 0.201416 6.0247 0.01724 *
## Residuals 56 1.87216 0.033431
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(betadisper(d, sample_data(microbedat)$diet))
## Warning in betadisper(d, sample_data(microbedat)$diet): some squared
## distances are negative and changed to zero
microbes.adonis
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
##
## adonis2(formula = d ~ diet * selection * round, data = as(sample_data(microbedat), "data.frame"), permutations = 10000, strata = line)
## Df SumOfSqs R2 F Pr(>F)
## diet 1 2.0683 0.21845 16.6231 9.999e-05 ***
## selection 1 0.0594 0.00627 0.4771 0.8018
## round 1 0.2174 0.02296 1.7469 0.1220
## diet:selection 1 0.2006 0.02119 1.6121 0.1566
## diet:round 1 0.3981 0.04205 3.1994 0.0108 *
## selection:round 1 0.2119 0.02238 1.7029 0.1327
## diet:selection:round 1 0.0912 0.00963 0.7330 0.5859
## Residual 50 6.2213 0.65708
## Total 57 9.4682 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
There are dispersion differences between the diets, so let’s analyze them separately
microbedat.hsd <- tax_glom(subset_samples(microbedat, diet == "hsd"), taxrank = "Genus")
d.hsd = UniFrac(microbedat.hsd)
(hsd.adonis <- adonis2(d.hsd ~ selection * round, as(sample_data(microbedat.hsd), "data.frame"), permutations = 10000, strata = line))
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
##
## adonis2(formula = d.hsd ~ selection * round, data = as(sample_data(microbedat.hsd), "data.frame"), permutations = 10000, strata = line)
## Df SumOfSqs R2 F Pr(>F)
## selection 1 0.1742 0.03838 1.0533 0.3919
## round 1 0.1023 0.02253 0.6184 0.7271
## selection:round 1 0.1275 0.02810 0.7711 0.5883
## Residual 25 4.1341 0.91099
## Total 28 4.5380 1.00000
microbedat.nsd <- tax_glom(subset_samples(microbedat, diet == "nsd"), taxrank = "Genus")
d.nsd = UniFrac(microbedat.nsd)
(hsd.adonis <- adonis2(d.nsd ~ selection * round, as(sample_data(microbedat.nsd), "data.frame"), permutations = 10000, strata = line))
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
##
## adonis2(formula = d.nsd ~ selection * round, data = as(sample_data(microbedat.nsd), "data.frame"), permutations = 10000, strata = line)
## Df SumOfSqs R2 F Pr(>F)
## selection 1 0.08577 0.02997 1.0274 0.388
## round 1 0.51320 0.17933 6.1469 9.999e-05 ***
## selection:round 1 0.17558 0.06135 2.1030 0.107
## Residual 25 2.08724 0.72935
## Total 28 2.86179 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(betadisper(d.nsd, sample_data(microbedat.nsd)$round))
## Warning in betadisper(d.nsd, sample_data(microbedat.nsd)$round): some
## squared distances are negative and changed to zero
## Analysis of Variance Table
##
## Response: Distances
## Df Sum Sq Mean Sq F value Pr(>F)
## Groups 4 0.09364 0.023411 0.4804 0.7498
## Residuals 24 1.16944 0.048727
Looks like there is evidence of community change in the low sugar diet over time, but no detectable change in the high sugar diet.
microbedat.phyloseq.time <- phyloseq_to_deseq2(subset_samples(microbedat, diet == "hsd" & time > 0), ~ time + line)
## converting counts to integer mode
microbedat.phyloseq.time <- results(DESeq(microbedat.phyloseq.time, test="LRT", fitType="local", reduced = ~ line))
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
head(microbedat.phyloseq.time[order(microbedat.phyloseq.time$pvalue),])
## log2 fold change (MLE): line 10 vs 1
## LRT p-value: '~ time + line' vs '~ line'
## DataFrame with 6 rows and 6 columns
## baseMean log2FoldChange
## <numeric> <numeric>
## 0bf86e80ab287770313005cfedc02aa6 24.7592917716998 0.792959035145591
## 2cb918624b64a0f450864feb5ef39a1c 0.878361477464068 3.21023370832391
## 7eb1df4a0a4af4d89aa9c5d5bf827444 0.0743967205000962 3.0540404867522
## 9b8f4530fffd78453dd5ecee8247fbc4 0.0686738958462426 2.99240537233919
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 0.136370061541386 2.72699484726743
## 802547545e68bfb764fb7e3a66d71374 1.29543463551755 2.56150914514678
## lfcSE stat
## <numeric> <numeric>
## 0bf86e80ab287770313005cfedc02aa6 4.56651450273001 0.804998258767597
## 2cb918624b64a0f450864feb5ef39a1c 8.16099939918329 0.208639052557686
## 7eb1df4a0a4af4d89aa9c5d5bf827444 8.16244727825418 0.20626784308285
## 9b8f4530fffd78453dd5ecee8247fbc4 8.16250160489022 0.197380475545874
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 8.16271817372288 0.187755912760666
## 802547545e68bfb764fb7e3a66d71374 8.16302714417741 0.173307847146628
## pvalue padj
## <numeric> <numeric>
## 0bf86e80ab287770313005cfedc02aa6 0.369603161261352 1
## 2cb918624b64a0f450864feb5ef39a1c 0.647836198117257 1
## 7eb1df4a0a4af4d89aa9c5d5bf827444 0.649708490881428 1
## 9b8f4530fffd78453dd5ecee8247fbc4 0.656843611044843 1
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 0.66479095166259 1
## 802547545e68bfb764fb7e3a66d71374 0.677188596965612 1
microbedat.phyloseq.time <- phyloseq_to_deseq2(subset_samples(microbedat, diet == "nsd" & time > 0), ~ time + line)
## converting counts to integer mode
microbedat.phyloseq.time <- results(DESeq(microbedat.phyloseq.time, test="LRT", fitType="local", reduced = ~ line))
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
head(microbedat.phyloseq.time[order(microbedat.phyloseq.time$pvalue),])
## log2 fold change (MLE): line 10 vs 1
## LRT p-value: '~ time + line' vs '~ line'
## DataFrame with 6 rows and 6 columns
## baseMean log2FoldChange
## <numeric> <numeric>
## 6012605abede608110aa60e12695d5a3 0.340575758609416 2.95370524067047
## ddf83c0b68613f341902790a082bc5a3 1.25916863505581 2.17093562227027
## b656988f920c0d400c660c5f337ffb67 0.319977917188704 -0.693104787863253
## db9f0d4fb97420260553ad52e56ef69b 2.66350343321965 -0.477341066862258
## 3411f0860e8e37277e8ff7d546337c3f 0.267604860112273 -1.15447903586402
## e299dc11f1ef328a611946fb19e9422d 0.161589109470717 -1.0949771255914
## lfcSE stat
## <numeric> <numeric>
## 6012605abede608110aa60e12695d5a3 7.04224473995456 0.162895345989963
## ddf83c0b68613f341902790a082bc5a3 6.86706648601626 0.152606934512079
## b656988f920c0d400c660c5f337ffb67 7.02904222212107 0.0883245434138615
## db9f0d4fb97420260553ad52e56ef69b 5.72863054592215 0.0716390156040063
## 3411f0860e8e37277e8ff7d546337c3f 7.02060399826492 0.0504821230376891
## e299dc11f1ef328a611946fb19e9422d 7.02207742932735 0.0503916576102981
## pvalue padj
## <numeric> <numeric>
## 6012605abede608110aa60e12695d5a3 0.686504711714834 1
## ddf83c0b68613f341902790a082bc5a3 0.696056423624934 1
## b656988f920c0d400c660c5f337ffb67 0.76631805586275 1
## db9f0d4fb97420260553ad52e56ef69b 0.788965154845989 1
## 3411f0860e8e37277e8ff7d546337c3f 0.822226457457341 1
## e299dc11f1ef328a611946fb19e9422d 0.822383156508776 1
No individual OTU is associated with fly emergence tim
microbedat.phyloseq.round <- phyloseq_to_deseq2(tax_glom(subset_samples(microbedat, diet == "hsd"), taxrank = "Genus"), ~ round + line)
## converting counts to integer mode
## the design formula contains a numeric variable with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
microbedat.phyloseq.round <- results(DESeq(microbedat.phyloseq.round, test="LRT", fitType="local", reduced = ~ line))
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
head(microbedat.phyloseq.round[order(microbedat.phyloseq.round$pvalue),])
## log2 fold change (MLE): line 10 vs 1
## LRT p-value: '~ round + line' vs '~ line'
## DataFrame with 6 rows and 6 columns
## baseMean log2FoldChange
## <numeric> <numeric>
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 13.0118428681771 0.0177751212782488
## 5b3a8ffeed018d279c38505129abd5fd 3.74030565186215 3.31900341871001
## c5395c876efbfada63433d5be9c4e06b 2.76782618237799 3.31736835414907
## e1b2e90c23e8c2c49d7895f14e441f96 4.6691847512055 5.27096330350529
## b75a5884989d17f8424b7c08ee28f09c 3.76462953569669 -6.71570016400104
## 37d1cd8011e75115ae32119254132bca 66.2220264893501 -0.246551488586504
## lfcSE stat
## <numeric> <numeric>
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 7.21607893072118 1.88433008785536
## 5b3a8ffeed018d279c38505129abd5fd 7.20334660758818 1.14124405928748
## c5395c876efbfada63433d5be9c4e06b 7.20349863849314 1.14103223005445
## e1b2e90c23e8c2c49d7895f14e441f96 7.18907304294161 0.904319672596593
## b75a5884989d17f8424b7c08ee28f09c 7.24272351866331 0.852913390973008
## 37d1cd8011e75115ae32119254132bca 2.14968286017655 0.837262057786575
## pvalue padj
## <numeric> <numeric>
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 0.169842820067783 1
## 5b3a8ffeed018d279c38505129abd5fd 0.285389604953306 1
## c5395c876efbfada63433d5be9c4e06b 0.285434317751509 1
## e1b2e90c23e8c2c49d7895f14e441f96 0.341626082721452 1
## b75a5884989d17f8424b7c08ee28f09c 0.355729458028925 1
## 37d1cd8011e75115ae32119254132bca 0.360180999508781 1
microbedat.phyloseq.round <- phyloseq_to_deseq2(tax_glom(subset_samples(microbedat, diet == "nsd"), taxrank = "Genus"), ~ round + line)
## converting counts to integer mode
## the design formula contains a numeric variable with integer values,
## specifying a model with increasing fold change for higher values.
## did you mean for this to be a factor? if so, first convert
## this variable to a factor using the factor() function
microbedat.phyloseq.round <- results(DESeq(microbedat.phyloseq.round, test="LRT", fitType="local", reduced = ~ line))
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## 1 rows did not converge in beta, labelled in mcols(object)$fullBetaConv. Use larger maxit argument with nbinomLRT
head(microbedat.phyloseq.round[order(microbedat.phyloseq.round$pvalue),])
## log2 fold change (MLE): line 10 vs 1
## LRT p-value: '~ round + line' vs '~ line'
## DataFrame with 6 rows and 6 columns
## baseMean log2FoldChange
## <numeric> <numeric>
## 46d866c5c1bdd89200e1867baf5567db 55306.2023332879 3.21081126637371
## e481c86d25c16bda35869bb7b1232252 280.892914342214 2.25787012803927
## 82a590792bb28943e234eec7d37ffafe 37.3456168142284 -5.18037282148377
## fe201038a0eb3464a9a3afbc0b91f168 21.2933351542597 -18.619012334243
## 54f0d22e60ac26b58c06de3fb6d137c4 2624.19915647487 -0.795983967793166
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 121.62356176636 -1.52138335944504
## lfcSE stat
## <numeric> <numeric>
## 46d866c5c1bdd89200e1867baf5567db 3.53312015752624 7.08814953364737
## e481c86d25c16bda35869bb7b1232252 4.80953892946386 6.1675163692334
## 82a590792bb28943e234eec7d37ffafe 7.05850480399858 2.46288128091848
## fe201038a0eb3464a9a3afbc0b91f168 7.15549084325466 1.78885355164293
## 54f0d22e60ac26b58c06de3fb6d137c4 3.16734401827821 1.33205066678266
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 2.35489949552596 1.24766934998371
## pvalue padj
## <numeric> <numeric>
## 46d866c5c1bdd89200e1867baf5567db 0.00775953271076444 0.104093722897698
## e481c86d25c16bda35869bb7b1232252 0.0130117153622122 0.104093722897698
## 82a590792bb28943e234eec7d37ffafe 0.116564785919079 0.621678858235086
## fe201038a0eb3464a9a3afbc0b91f168 0.181065908653573 0.703994896226761
## 54f0d22e60ac26b58c06de3fb6d137c4 0.248440729475066 0.703994896226761
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 0.263998086085035 0.703994896226761
head(microbedat.phyloseq.round[order(microbedat.phyloseq.round$pvalue),])
## log2 fold change (MLE): line 10 vs 1
## LRT p-value: '~ round + line' vs '~ line'
## DataFrame with 6 rows and 6 columns
## baseMean log2FoldChange
## <numeric> <numeric>
## 46d866c5c1bdd89200e1867baf5567db 55306.2023332879 3.21081126637371
## e481c86d25c16bda35869bb7b1232252 280.892914342214 2.25787012803927
## 82a590792bb28943e234eec7d37ffafe 37.3456168142284 -5.18037282148377
## fe201038a0eb3464a9a3afbc0b91f168 21.2933351542597 -18.619012334243
## 54f0d22e60ac26b58c06de3fb6d137c4 2624.19915647487 -0.795983967793166
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 121.62356176636 -1.52138335944504
## lfcSE stat
## <numeric> <numeric>
## 46d866c5c1bdd89200e1867baf5567db 3.53312015752624 7.08814953364737
## e481c86d25c16bda35869bb7b1232252 4.80953892946386 6.1675163692334
## 82a590792bb28943e234eec7d37ffafe 7.05850480399858 2.46288128091848
## fe201038a0eb3464a9a3afbc0b91f168 7.15549084325466 1.78885355164293
## 54f0d22e60ac26b58c06de3fb6d137c4 3.16734401827821 1.33205066678266
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 2.35489949552596 1.24766934998371
## pvalue padj
## <numeric> <numeric>
## 46d866c5c1bdd89200e1867baf5567db 0.00775953271076444 0.104093722897698
## e481c86d25c16bda35869bb7b1232252 0.0130117153622122 0.104093722897698
## 82a590792bb28943e234eec7d37ffafe 0.116564785919079 0.621678858235086
## fe201038a0eb3464a9a3afbc0b91f168 0.181065908653573 0.703994896226761
## 54f0d22e60ac26b58c06de3fb6d137c4 0.248440729475066 0.703994896226761
## 3b4673bd2141d5ce0ac87fbee9a1c6ba 0.263998086085035 0.703994896226761
all_means<-read.csv("column_level_means_allfiles.csv",header=TRUE)
average_means<-all_means%>%group_by(fullname,generation,line)%>%summarise_at(.vars = names(.)[2],funs(mean(., na.rm=TRUE)))
#adding the selected/choosen vial informtion-
choosen_means<-read.csv("meaneclosion_parentandoffspring_data_linear.csv",header=TRUE)
#joining the two files- #all.y=TRUE as we need to include the zero means
selection2<-merge(average_means,choosen_means,by.x=c("generation","fullname","line"),by.y=c("Generation","Diet","Line"),all.y=TRUE)
selection2[is.na(selection2)] <- 0
#selection-coefficient calculations-
selection_coefficient<-selection2%>%mutate(selection_coefficient=vial_mean/mean_of_each_column)
selection_coefficient$selection<-unlist(lapply(strsplit(as.character(selection_coefficient$fullname),split="_"),"[",2))
selection_coefficient$diet<-unlist(lapply(strsplit(as.character(selection_coefficient$fullname),split="_"),"[",1))
selected_only<-selection_coefficient%>%filter(selection=="selection")
selected_only<-selected_only%>%filter(!selection_coefficient==Inf)
#some summations-
selected_summation<-selected_only %>% group_by(diet,generation) %>% summarise_at(vars(mean_of_each_column,vial_mean), sum)
selected_summation$mean_of_each_column<-selected_summation$mean_of_each_column/10
selected_summation$vial_mean<-selected_summation$vial_mean/10
selected_summation<-selected_summation%>%mutate(selection_coefficient=vial_mean-mean_of_each_column)
(s<-mean(selected_summation$selection_coefficient)) #selection coefficient
## [1] -6.833194
sd(selected_summation$selection_coefficient)
## [1] 11.4756
This is the correlation between phenotypes in source and donor media
parent_offspring<-read.csv("meaneclosion_parentandoffspring_Data_FOandF1.csv",header=TRUE)
parent_offspring$media<-unlist(lapply(strsplit(as.character(parent_offspring$Diet),split="_"),"[",1))
parent_offspring$selection<-unlist(lapply(strsplit(as.character(parent_offspring$Diet),split="_"),"[",2))
noselected<-parent_offspring%>%filter(selection=="noselection")
noselected2<-noselected%>%filter(F0_parent_mean!=0)
noselected3<-noselected2%>%filter(F1_child_mean!=0)
x <- noselected3$F0_parent_mean
y <- noselected3$F1_child_mean
(h2 <-cor(x, y)^2) #heritability
## [1] 0.8442553
h2*s
## [1] -5.76896
## setting value
## version R version 3.5.3 (2019-03-11)
## os macOS Mojave 10.14.6
## system x86_64, darwin15.6.0
## ui X11
## language (EN)
## collate en_US.UTF-8
## ctype en_US.UTF-8
## tz Asia/Tokyo
## date 2019-10-03
package | ondiskversion | loadedversion | path | loadedpath | attached | is_base | date | source | md5ok | library | |
---|---|---|---|---|---|---|---|---|---|---|---|
abind | abind | 1.4.5 | 1.4-5 | /Users/sasha/Library/R/3.5/library/abind | /Users/sasha/Library/R/3.5/library/abind | FALSE | FALSE | 2016-07-21 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
acepack | acepack | 1.4.1 | 1.4.1 | /Users/sasha/Library/R/3.5/library/acepack | /Users/sasha/Library/R/3.5/library/acepack | FALSE | FALSE | 2016-10-29 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
ade4 | ade4 | 1.7.13 | 1.7-13 | /Users/sasha/Library/R/3.5/library/ade4 | /Users/sasha/Library/R/3.5/library/ade4 | FALSE | FALSE | 2018-08-31 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
annotate | annotate | 1.60.1 | 1.60.1 | /Users/sasha/Library/R/3.5/library/annotate | /Users/sasha/Library/R/3.5/library/annotate | FALSE | FALSE | 2019-03-07 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
AnnotationDbi | AnnotationDbi | 1.44.0 | 1.44.0 | /Users/sasha/Library/R/3.5/library/AnnotationDbi | /Users/sasha/Library/R/3.5/library/AnnotationDbi | FALSE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
ape | ape | 5.3 | 5.3 | /Users/sasha/Library/R/3.5/library/ape | /Users/sasha/Library/R/3.5/library/ape | FALSE | FALSE | 2019-03-17 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
assertthat | assertthat | 0.2.1 | 0.2.1 | /Users/sasha/Library/R/3.5/library/assertthat | /Users/sasha/Library/R/3.5/library/assertthat | FALSE | FALSE | 2019-03-21 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
backports | backports | 1.1.4 | 1.1.4 | /Users/sasha/Library/R/3.5/library/backports | /Users/sasha/Library/R/3.5/library/backports | FALSE | FALSE | 2019-04-10 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
base64enc | base64enc | 0.1.3 | 0.1-3 | /Users/sasha/Library/R/3.5/library/base64enc | /Users/sasha/Library/R/3.5/library/base64enc | FALSE | FALSE | 2015-07-28 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
bayestestR | bayestestR | 0.2.5 | 0.2.5 | /Users/sasha/Library/R/3.5/library/bayestestR | /Users/sasha/Library/R/3.5/library/bayestestR | FALSE | FALSE | 2019-08-06 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
Biobase | Biobase | 2.42.0 | 2.42.0 | /Users/sasha/Library/R/3.5/library/Biobase | /Users/sasha/Library/R/3.5/library/Biobase | TRUE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
BiocGenerics | BiocGenerics | 0.28.0 | 0.28.0 | /Users/sasha/Library/R/3.5/library/BiocGenerics | /Users/sasha/Library/R/3.5/library/BiocGenerics | TRUE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
BiocParallel | BiocParallel | 1.16.6 | 1.16.6 | /Users/sasha/Library/R/3.5/library/BiocParallel | /Users/sasha/Library/R/3.5/library/BiocParallel | TRUE | FALSE | 2019-02-17 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
biomformat | biomformat | 1.10.1 | 1.10.1 | /Users/sasha/Library/R/3.5/library/biomformat | /Users/sasha/Library/R/3.5/library/biomformat | FALSE | FALSE | 2019-01-04 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
Biostrings | Biostrings | 2.50.2 | 2.50.2 | /Users/sasha/Library/R/3.5/library/Biostrings | /Users/sasha/Library/R/3.5/library/Biostrings | FALSE | FALSE | 2019-01-03 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
bit | bit | 1.1.14 | 1.1-14 | /Users/sasha/Library/R/3.5/library/bit | /Users/sasha/Library/R/3.5/library/bit | FALSE | FALSE | 2018-05-29 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
bit64 | bit64 | 0.9.7 | 0.9-7 | /Users/sasha/Library/R/3.5/library/bit64 | /Users/sasha/Library/R/3.5/library/bit64 | FALSE | FALSE | 2017-05-08 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
bitops | bitops | 1.0.6 | 1.0-6 | /Users/sasha/Library/R/3.5/library/bitops | /Users/sasha/Library/R/3.5/library/bitops | FALSE | FALSE | 2013-08-17 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
blob | blob | 1.2.0 | 1.2.0 | /Users/sasha/Library/R/3.5/library/blob | /Users/sasha/Library/R/3.5/library/blob | FALSE | FALSE | 2019-07-09 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
boot | boot | 1.3.23 | 1.3-23 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/boot | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/boot | FALSE | FALSE | 2019-07-05 | CRAN (R 3.5.2) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
breakaway | breakaway | 4.6.8 | 4.6.8 | /Users/sasha/Library/R/3.5/library/breakaway | /Users/sasha/Library/R/3.5/library/breakaway | TRUE | FALSE | 2019-06-10 | Github (adw96/breakaway@07268b0) | NA | /Users/sasha/Library/R/3.5/library |
broom | broom | 0.5.2 | 0.5.2 | /Users/sasha/Library/R/3.5/library/broom | /Users/sasha/Library/R/3.5/library/broom | FALSE | FALSE | 2019-04-07 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
callr | callr | 3.3.1 | 3.3.1 | /Users/sasha/Library/R/3.5/library/callr | /Users/sasha/Library/R/3.5/library/callr | FALSE | FALSE | 2019-07-18 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
carData | carData | 3.0.2 | 3.0-2 | /Users/sasha/Library/R/3.5/library/carData | /Users/sasha/Library/R/3.5/library/carData | TRUE | FALSE | 2018-09-30 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
cellranger | cellranger | 1.1.0 | 1.1.0 | /Users/sasha/Library/R/3.5/library/cellranger | /Users/sasha/Library/R/3.5/library/cellranger | FALSE | FALSE | 2016-07-27 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
checkmate | checkmate | 1.9.4 | 1.9.4 | /Users/sasha/Library/R/3.5/library/checkmate | /Users/sasha/Library/R/3.5/library/checkmate | FALSE | FALSE | 2019-07-04 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
cli | cli | 1.1.0 | 1.1.0 | /Users/sasha/Library/R/3.5/library/cli | /Users/sasha/Library/R/3.5/library/cli | FALSE | FALSE | 2019-03-19 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
cluster | cluster | 2.1.0 | 2.1.0 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/cluster | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/cluster | FALSE | FALSE | 2019-06-19 | CRAN (R 3.5.2) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
coda | coda | 0.19.3 | 0.19-3 | /Users/sasha/Library/R/3.5/library/coda | /Users/sasha/Library/R/3.5/library/coda | FALSE | FALSE | 2019-07-05 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
codetools | codetools | 0.2.16 | 0.2-16 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/codetools | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/codetools | FALSE | FALSE | 2018-12-24 | CRAN (R 3.5.3) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
colorspace | colorspace | 1.4.1 | 1.4-1 | /Users/sasha/Library/R/3.5/library/colorspace | /Users/sasha/Library/R/3.5/library/colorspace | FALSE | FALSE | 2019-03-18 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
crayon | crayon | 1.3.4 | 1.3.4 | /Users/sasha/Library/R/3.5/library/crayon | /Users/sasha/Library/R/3.5/library/crayon | FALSE | FALSE | 2017-09-16 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
data.table | data.table | 1.12.2 | 1.12.2 | /Users/sasha/Library/R/3.5/library/data.table | /Users/sasha/Library/R/3.5/library/data.table | FALSE | FALSE | 2019-04-07 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
DBI | DBI | 1.0.0 | 1.0.0 | /Users/sasha/Library/R/3.5/library/DBI | /Users/sasha/Library/R/3.5/library/DBI | FALSE | FALSE | 2018-05-02 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
DelayedArray | DelayedArray | 0.8.0 | 0.8.0 | /Users/sasha/Library/R/3.5/library/DelayedArray | /Users/sasha/Library/R/3.5/library/DelayedArray | TRUE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
desc | desc | 1.2.0 | 1.2.0 | /Users/sasha/Library/R/3.5/library/desc | /Users/sasha/Library/R/3.5/library/desc | FALSE | FALSE | 2018-05-01 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
DESeq2 | DESeq2 | 1.22.2 | 1.22.2 | /Users/sasha/Library/R/3.5/library/DESeq2 | /Users/sasha/Library/R/3.5/library/DESeq2 | TRUE | FALSE | 2019-01-04 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
devtools | devtools | 2.1.0 | 2.1.0 | /Users/sasha/Library/R/3.5/library/devtools | /Users/sasha/Library/R/3.5/library/devtools | FALSE | FALSE | 2019-07-06 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
digest | digest | 0.6.20 | 0.6.20 | /Users/sasha/Library/R/3.5/library/digest | /Users/sasha/Library/R/3.5/library/digest | FALSE | FALSE | 2019-07-04 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
DivNet | DivNet | 0.3.1 | 0.3.1 | /Users/sasha/Library/R/3.5/library/DivNet | /Users/sasha/Library/R/3.5/library/DivNet | TRUE | FALSE | 2019-06-10 | Github (adw96/DivNet@1c17836) | NA | /Users/sasha/Library/R/3.5/library |
doParallel | doParallel | 1.0.15 | 1.0.15 | /Users/sasha/Library/R/3.5/library/doParallel | /Users/sasha/Library/R/3.5/library/doParallel | FALSE | FALSE | 2019-08-02 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
doSNOW | doSNOW | 1.0.18 | 1.0.18 | /Users/sasha/Library/R/3.5/library/doSNOW | /Users/sasha/Library/R/3.5/library/doSNOW | FALSE | FALSE | 2019-07-27 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
dplyr | dplyr | 0.8.3 | 0.8.3 | /Users/sasha/Library/R/3.5/library/dplyr | /Users/sasha/Library/R/3.5/library/dplyr | TRUE | FALSE | 2019-07-04 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
effects | effects | 4.1.2 | 4.1-2 | /Users/sasha/Library/R/3.5/library/effects | /Users/sasha/Library/R/3.5/library/effects | TRUE | FALSE | 2019-09-03 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
emmeans | emmeans | 1.4 | 1.4 | /Users/sasha/Library/R/3.5/library/emmeans | /Users/sasha/Library/R/3.5/library/emmeans | FALSE | FALSE | 2019-08-01 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
estimability | estimability | 1.3 | 1.3 | /Users/sasha/Library/R/3.5/library/estimability | /Users/sasha/Library/R/3.5/library/estimability | FALSE | FALSE | 2018-02-11 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
evaluate | evaluate | 0.14 | 0.14 | /Users/sasha/Library/R/3.5/library/evaluate | /Users/sasha/Library/R/3.5/library/evaluate | FALSE | FALSE | 2019-05-28 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
forcats | forcats | 0.4.0 | 0.4.0 | /Users/sasha/Library/R/3.5/library/forcats | /Users/sasha/Library/R/3.5/library/forcats | TRUE | FALSE | 2019-02-17 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
foreach | foreach | 1.4.7 | 1.4.7 | /Users/sasha/Library/R/3.5/library/foreach | /Users/sasha/Library/R/3.5/library/foreach | FALSE | FALSE | 2019-07-27 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
foreign | foreign | 0.8.72 | 0.8-72 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/foreign | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/foreign | FALSE | FALSE | 2019-08-02 | CRAN (R 3.5.2) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
Formula | Formula | 1.2.3 | 1.2-3 | /Users/sasha/Library/R/3.5/library/Formula | /Users/sasha/Library/R/3.5/library/Formula | FALSE | FALSE | 2018-05-03 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
fs | fs | 1.3.1 | 1.3.1 | /Users/sasha/Library/R/3.5/library/fs | /Users/sasha/Library/R/3.5/library/fs | FALSE | FALSE | 2019-05-06 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
genefilter | genefilter | 1.64.0 | 1.64.0 | /Users/sasha/Library/R/3.5/library/genefilter | /Users/sasha/Library/R/3.5/library/genefilter | FALSE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
geneplotter | geneplotter | 1.60.0 | 1.60.0 | /Users/sasha/Library/R/3.5/library/geneplotter | /Users/sasha/Library/R/3.5/library/geneplotter | FALSE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
generics | generics | 0.0.2 | 0.0.2 | /Users/sasha/Library/R/3.5/library/generics | /Users/sasha/Library/R/3.5/library/generics | FALSE | FALSE | 2018-11-29 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
GenomeInfoDb | GenomeInfoDb | 1.18.2 | 1.18.2 | /Users/sasha/Library/R/3.5/library/GenomeInfoDb | /Users/sasha/Library/R/3.5/library/GenomeInfoDb | TRUE | FALSE | 2019-02-12 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
GenomeInfoDbData | GenomeInfoDbData | 1.2.0 | 1.2.0 | /Users/sasha/Library/R/3.5/library/GenomeInfoDbData | /Users/sasha/Library/R/3.5/library/GenomeInfoDbData | FALSE | FALSE | 2019-06-14 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
GenomicRanges | GenomicRanges | 1.34.0 | 1.34.0 | /Users/sasha/Library/R/3.5/library/GenomicRanges | /Users/sasha/Library/R/3.5/library/GenomicRanges | TRUE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
ggeffects | ggeffects | 0.12.0 | 0.12.0 | /Users/sasha/Library/R/3.5/library/ggeffects | /Users/sasha/Library/R/3.5/library/ggeffects | FALSE | FALSE | 2019-09-03 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
ggplot2 | ggplot2 | 3.2.1 | 3.2.1 | /Users/sasha/Library/R/3.5/library/ggplot2 | /Users/sasha/Library/R/3.5/library/ggplot2 | TRUE | FALSE | 2019-08-10 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
ggrepel | ggrepel | 0.8.1 | 0.8.1 | /Users/sasha/Library/R/3.5/library/ggrepel | /Users/sasha/Library/R/3.5/library/ggrepel | FALSE | FALSE | 2019-05-07 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
glmmTMB | glmmTMB | 0.2.3 | 0.2.3 | /Users/sasha/Library/R/3.5/library/glmmTMB | /Users/sasha/Library/R/3.5/library/glmmTMB | FALSE | FALSE | 2019-01-11 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
glue | glue | 1.3.1 | 1.3.1 | /Users/sasha/Library/R/3.5/library/glue | /Users/sasha/Library/R/3.5/library/glue | FALSE | FALSE | 2019-03-12 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
gridExtra | gridExtra | 2.3 | 2.3 | /Users/sasha/Library/R/3.5/library/gridExtra | /Users/sasha/Library/R/3.5/library/gridExtra | TRUE | FALSE | 2017-09-09 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
gtable | gtable | 0.3.0 | 0.3.0 | /Users/sasha/Library/R/3.5/library/gtable | /Users/sasha/Library/R/3.5/library/gtable | FALSE | FALSE | 2019-03-25 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
haven | haven | 2.1.1 | 2.1.1 | /Users/sasha/Library/R/3.5/library/haven | /Users/sasha/Library/R/3.5/library/haven | FALSE | FALSE | 2019-07-04 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
Hmisc | Hmisc | 4.2.0 | 4.2-0 | /Users/sasha/Library/R/3.5/library/Hmisc | /Users/sasha/Library/R/3.5/library/Hmisc | FALSE | FALSE | 2019-01-26 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
hms | hms | 0.5.1 | 0.5.1 | /Users/sasha/Library/R/3.5/library/hms | /Users/sasha/Library/R/3.5/library/hms | FALSE | FALSE | 2019-08-23 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
htmlTable | htmlTable | 1.13.1 | 1.13.1 | /Users/sasha/Library/R/3.5/library/htmlTable | /Users/sasha/Library/R/3.5/library/htmlTable | FALSE | FALSE | 2019-01-07 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
htmltools | htmltools | 0.3.6 | 0.3.6 | /Users/sasha/Library/R/3.5/library/htmltools | /Users/sasha/Library/R/3.5/library/htmltools | FALSE | FALSE | 2017-04-28 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
htmlwidgets | htmlwidgets | 1.3 | 1.3 | /Users/sasha/Library/R/3.5/library/htmlwidgets | /Users/sasha/Library/R/3.5/library/htmlwidgets | FALSE | FALSE | 2018-09-30 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
httr | httr | 1.4.1 | 1.4.1 | /Users/sasha/Library/R/3.5/library/httr | /Users/sasha/Library/R/3.5/library/httr | FALSE | FALSE | 2019-08-05 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
igraph | igraph | 1.2.4.1 | 1.2.4.1 | /Users/sasha/Library/R/3.5/library/igraph | /Users/sasha/Library/R/3.5/library/igraph | FALSE | FALSE | 2019-04-22 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
insight | insight | 0.4.1 | 0.4.1 | /Users/sasha/Library/R/3.5/library/insight | /Users/sasha/Library/R/3.5/library/insight | FALSE | FALSE | 2019-07-24 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
IRanges | IRanges | 2.16.0 | 2.16.0 | /Users/sasha/Library/R/3.5/library/IRanges | /Users/sasha/Library/R/3.5/library/IRanges | TRUE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
iterators | iterators | 1.0.12 | 1.0.12 | /Users/sasha/Library/R/3.5/library/iterators | /Users/sasha/Library/R/3.5/library/iterators | FALSE | FALSE | 2019-07-26 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
jsonlite | jsonlite | 1.6 | 1.6 | /Users/sasha/Library/R/3.5/library/jsonlite | /Users/sasha/Library/R/3.5/library/jsonlite | FALSE | FALSE | 2018-12-07 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
kableExtra | kableExtra | 1.1.0 | 1.1.0 | /Users/sasha/Library/R/3.5/library/kableExtra | /Users/sasha/Library/R/3.5/library/kableExtra | TRUE | FALSE | 2019-03-16 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
knitr | knitr | 1.24 | 1.24 | /Users/sasha/Library/R/3.5/library/knitr | /Users/sasha/Library/R/3.5/library/knitr | TRUE | FALSE | 2019-08-08 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
labeling | labeling | 0.3 | 0.3 | /Users/sasha/Library/R/3.5/library/labeling | /Users/sasha/Library/R/3.5/library/labeling | FALSE | FALSE | 2014-08-23 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
lattice | lattice | 0.20.38 | 0.20-38 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/lattice | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/lattice | TRUE | FALSE | 2018-11-04 | CRAN (R 3.5.3) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
latticeExtra | latticeExtra | 0.6.28 | 0.6-28 | /Users/sasha/Library/R/3.5/library/latticeExtra | /Users/sasha/Library/R/3.5/library/latticeExtra | FALSE | FALSE | 2016-02-09 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
lazyeval | lazyeval | 0.2.2 | 0.2.2 | /Users/sasha/Library/R/3.5/library/lazyeval | /Users/sasha/Library/R/3.5/library/lazyeval | FALSE | FALSE | 2019-03-15 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
lme4 | lme4 | 1.1.21 | 1.1-21 | /Users/sasha/Library/R/3.5/library/lme4 | /Users/sasha/Library/R/3.5/library/lme4 | TRUE | FALSE | 2019-03-05 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
locfit | locfit | 1.5.9.1 | 1.5-9.1 | /Users/sasha/Library/R/3.5/library/locfit | /Users/sasha/Library/R/3.5/library/locfit | FALSE | FALSE | 2013-04-20 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
lubridate | lubridate | 1.7.4 | 1.7.4 | /Users/sasha/Library/R/3.5/library/lubridate | /Users/sasha/Library/R/3.5/library/lubridate | FALSE | FALSE | 2018-04-11 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
magrittr | magrittr | 1.5 | 1.5 | /Users/sasha/Library/R/3.5/library/magrittr | /Users/sasha/Library/R/3.5/library/magrittr | FALSE | FALSE | 2014-11-22 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
MASS | MASS | 7.3.51.4 | 7.3-51.4 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/MASS | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/MASS | FALSE | FALSE | 2019-03-31 | CRAN (R 3.5.2) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
Matrix | Matrix | 1.2.17 | 1.2-17 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/Matrix | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/Matrix | TRUE | FALSE | 2019-03-22 | CRAN (R 3.5.2) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
matrixStats | matrixStats | 0.54.0 | 0.54.0 | /Users/sasha/Library/R/3.5/library/matrixStats | /Users/sasha/Library/R/3.5/library/matrixStats | TRUE | FALSE | 2018-07-23 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
memoise | memoise | 1.1.0 | 1.1.0 | /Users/sasha/Library/R/3.5/library/memoise | /Users/sasha/Library/R/3.5/library/memoise | FALSE | FALSE | 2017-04-21 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
mgcv | mgcv | 1.8.28 | 1.8-28 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/mgcv | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/mgcv | FALSE | FALSE | 2019-03-21 | CRAN (R 3.5.2) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
minqa | minqa | 1.2.4 | 1.2.4 | /Users/sasha/Library/R/3.5/library/minqa | /Users/sasha/Library/R/3.5/library/minqa | FALSE | FALSE | 2014-10-09 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
mitools | mitools | 2.4 | 2.4 | /Users/sasha/Library/R/3.5/library/mitools | /Users/sasha/Library/R/3.5/library/mitools | FALSE | FALSE | 2019-04-26 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
mnormt | mnormt | 1.5.5 | 1.5-5 | /Users/sasha/Library/R/3.5/library/mnormt | /Users/sasha/Library/R/3.5/library/mnormt | FALSE | FALSE | 2016-10-15 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
modelr | modelr | 0.1.5 | 0.1.5 | /Users/sasha/Library/R/3.5/library/modelr | /Users/sasha/Library/R/3.5/library/modelr | FALSE | FALSE | 2019-08-08 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
multtest | multtest | 2.38.0 | 2.38.0 | /Users/sasha/Library/R/3.5/library/multtest | /Users/sasha/Library/R/3.5/library/multtest | FALSE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
munsell | munsell | 0.5.0 | 0.5.0 | /Users/sasha/Library/R/3.5/library/munsell | /Users/sasha/Library/R/3.5/library/munsell | FALSE | FALSE | 2018-06-12 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
mvnfast | mvnfast | 0.2.5 | 0.2.5 | /Users/sasha/Library/R/3.5/library/mvnfast | /Users/sasha/Library/R/3.5/library/mvnfast | FALSE | FALSE | 2018-01-31 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
mvtnorm | mvtnorm | 1.0.11 | 1.0-11 | /Users/sasha/Library/R/3.5/library/mvtnorm | /Users/sasha/Library/R/3.5/library/mvtnorm | FALSE | FALSE | 2019-06-19 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
nlme | nlme | 3.1.141 | 3.1-141 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/nlme | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/nlme | TRUE | FALSE | 2019-08-01 | CRAN (R 3.5.2) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
nloptr | nloptr | 1.2.1 | 1.2.1 | /Users/sasha/Library/R/3.5/library/nloptr | /Users/sasha/Library/R/3.5/library/nloptr | FALSE | FALSE | 2018-10-03 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
nnet | nnet | 7.3.12 | 7.3-12 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/nnet | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/nnet | FALSE | FALSE | 2016-02-02 | CRAN (R 3.5.3) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
performance | performance | 0.3.0 | 0.3.0 | /Users/sasha/Library/R/3.5/library/performance | /Users/sasha/Library/R/3.5/library/performance | FALSE | FALSE | 2019-08-05 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
permute | permute | 0.9.5 | 0.9-5 | /Users/sasha/Library/R/3.5/library/permute | /Users/sasha/Library/R/3.5/library/permute | TRUE | FALSE | 2019-03-12 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
phyloseq | phyloseq | 1.26.1 | 1.26.1 | /Users/sasha/Library/R/3.5/library/phyloseq | /Users/sasha/Library/R/3.5/library/phyloseq | TRUE | FALSE | 2019-01-04 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
pillar | pillar | 1.4.2 | 1.4.2 | /Users/sasha/Library/R/3.5/library/pillar | /Users/sasha/Library/R/3.5/library/pillar | FALSE | FALSE | 2019-06-29 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
pkgbuild | pkgbuild | 1.0.5 | 1.0.5 | /Users/sasha/Library/R/3.5/library/pkgbuild | /Users/sasha/Library/R/3.5/library/pkgbuild | FALSE | FALSE | 2019-08-26 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
pkgconfig | pkgconfig | 2.0.2 | 2.0.2 | /Users/sasha/Library/R/3.5/library/pkgconfig | /Users/sasha/Library/R/3.5/library/pkgconfig | FALSE | FALSE | 2018-08-16 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
pkgload | pkgload | 1.0.2 | 1.0.2 | /Users/sasha/Library/R/3.5/library/pkgload | /Users/sasha/Library/R/3.5/library/pkgload | FALSE | FALSE | 2018-10-29 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
plyr | plyr | 1.8.4 | 1.8.4 | /Users/sasha/Library/R/3.5/library/plyr | /Users/sasha/Library/R/3.5/library/plyr | FALSE | FALSE | 2016-06-08 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
prettyunits | prettyunits | 1.0.2 | 1.0.2 | /Users/sasha/Library/R/3.5/library/prettyunits | /Users/sasha/Library/R/3.5/library/prettyunits | FALSE | FALSE | 2015-07-13 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
processx | processx | 3.4.1 | 3.4.1 | /Users/sasha/Library/R/3.5/library/processx | /Users/sasha/Library/R/3.5/library/processx | FALSE | FALSE | 2019-07-18 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
ps | ps | 1.3.0 | 1.3.0 | /Users/sasha/Library/R/3.5/library/ps | /Users/sasha/Library/R/3.5/library/ps | FALSE | FALSE | 2018-12-21 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
psych | psych | 1.8.12 | 1.8.12 | /Users/sasha/Library/R/3.5/library/psych | /Users/sasha/Library/R/3.5/library/psych | FALSE | FALSE | 2019-01-12 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
purrr | purrr | 0.3.2 | 0.3.2 | /Users/sasha/Library/R/3.5/library/purrr | /Users/sasha/Library/R/3.5/library/purrr | TRUE | FALSE | 2019-03-15 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
qiime2R | qiime2R | 0.99.11 | 0.99.11 | /Users/sasha/Library/R/3.5/library/qiime2R | /Users/sasha/Library/R/3.5/library/qiime2R | TRUE | FALSE | 2019-06-10 | Github (jbisanz/qiime2R@afd7cdd) | NA | /Users/sasha/Library/R/3.5/library |
R6 | R6 | 2.4.0 | 2.4.0 | /Users/sasha/Library/R/3.5/library/R6 | /Users/sasha/Library/R/3.5/library/R6 | FALSE | FALSE | 2019-02-14 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
RColorBrewer | RColorBrewer | 1.1.2 | 1.1-2 | /Users/sasha/Library/R/3.5/library/RColorBrewer | /Users/sasha/Library/R/3.5/library/RColorBrewer | TRUE | FALSE | 2014-12-07 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
Rcpp | Rcpp | 1.0.2 | 1.0.2 | /Users/sasha/Library/R/3.5/library/Rcpp | /Users/sasha/Library/R/3.5/library/Rcpp | FALSE | FALSE | 2019-07-25 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
RCurl | RCurl | 1.95.4.12 | 1.95-4.12 | /Users/sasha/Library/R/3.5/library/RCurl | /Users/sasha/Library/R/3.5/library/RCurl | FALSE | FALSE | 2019-03-04 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
readr | readr | 1.3.1 | 1.3.1 | /Users/sasha/Library/R/3.5/library/readr | /Users/sasha/Library/R/3.5/library/readr | TRUE | FALSE | 2018-12-21 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
readxl | readxl | 1.3.1 | 1.3.1 | /Users/sasha/Library/R/3.5/library/readxl | /Users/sasha/Library/R/3.5/library/readxl | FALSE | FALSE | 2019-03-13 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
remotes | remotes | 2.1.0 | 2.1.0 | /Users/sasha/Library/R/3.5/library/remotes | /Users/sasha/Library/R/3.5/library/remotes | FALSE | FALSE | 2019-06-24 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
reshape2 | reshape2 | 1.4.3 | 1.4.3 | /Users/sasha/Library/R/3.5/library/reshape2 | /Users/sasha/Library/R/3.5/library/reshape2 | FALSE | FALSE | 2017-12-11 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
rhdf5 | rhdf5 | 2.26.2 | 2.26.2 | /Users/sasha/Library/R/3.5/library/rhdf5 | /Users/sasha/Library/R/3.5/library/rhdf5 | FALSE | FALSE | 2019-01-02 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
Rhdf5lib | Rhdf5lib | 1.4.3 | 1.4.3 | /Users/sasha/Library/R/3.5/library/Rhdf5lib | /Users/sasha/Library/R/3.5/library/Rhdf5lib | FALSE | FALSE | 2019-03-25 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
rlang | rlang | 0.4.0 | 0.4.0 | /Users/sasha/Library/R/3.5/library/rlang | /Users/sasha/Library/R/3.5/library/rlang | FALSE | FALSE | 2019-06-25 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
rmarkdown | rmarkdown | 1.15 | 1.15 | /Users/sasha/Library/R/3.5/library/rmarkdown | /Users/sasha/Library/R/3.5/library/rmarkdown | FALSE | FALSE | 2019-08-21 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
rpart | rpart | 4.1.15 | 4.1-15 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/rpart | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/rpart | FALSE | FALSE | 2019-04-12 | CRAN (R 3.5.2) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
rprojroot | rprojroot | 1.3.2 | 1.3-2 | /Users/sasha/Library/R/3.5/library/rprojroot | /Users/sasha/Library/R/3.5/library/rprojroot | FALSE | FALSE | 2018-01-03 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
RSQLite | RSQLite | 2.1.2 | 2.1.2 | /Users/sasha/Library/R/3.5/library/RSQLite | /Users/sasha/Library/R/3.5/library/RSQLite | FALSE | FALSE | 2019-07-24 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
rstudioapi | rstudioapi | 0.10 | 0.10 | /Users/sasha/Library/R/3.5/library/rstudioapi | /Users/sasha/Library/R/3.5/library/rstudioapi | FALSE | FALSE | 2019-03-19 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
rvest | rvest | 0.3.4 | 0.3.4 | /Users/sasha/Library/R/3.5/library/rvest | /Users/sasha/Library/R/3.5/library/rvest | FALSE | FALSE | 2019-05-15 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
S4Vectors | S4Vectors | 0.20.1 | 0.20.1 | /Users/sasha/Library/R/3.5/library/S4Vectors | /Users/sasha/Library/R/3.5/library/S4Vectors | TRUE | FALSE | 2018-11-09 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
scales | scales | 1.0.0 | 1.0.0 | /Users/sasha/Library/R/3.5/library/scales | /Users/sasha/Library/R/3.5/library/scales | TRUE | FALSE | 2018-08-09 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
sessioninfo | sessioninfo | 1.1.1 | 1.1.1 | /Users/sasha/Library/R/3.5/library/sessioninfo | /Users/sasha/Library/R/3.5/library/sessioninfo | FALSE | FALSE | 2018-11-05 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
sjlabelled | sjlabelled | 1.1.0 | 1.1.0 | /Users/sasha/Library/R/3.5/library/sjlabelled | /Users/sasha/Library/R/3.5/library/sjlabelled | FALSE | FALSE | 2019-06-06 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
sjmisc | sjmisc | 2.8.1 | 2.8.1 | /Users/sasha/Library/R/3.5/library/sjmisc | /Users/sasha/Library/R/3.5/library/sjmisc | FALSE | FALSE | 2019-06-17 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
sjPlot | sjPlot | 2.7.0 | 2.7.0 | /Users/sasha/Library/R/3.5/library/sjPlot | /Users/sasha/Library/R/3.5/library/sjPlot | TRUE | FALSE | 2019-08-05 | Github (strengejacke/sjPlot@97c08d5) | NA | /Users/sasha/Library/R/3.5/library |
sjstats | sjstats | 0.17.5 | 0.17.5 | /Users/sasha/Library/R/3.5/library/sjstats | /Users/sasha/Library/R/3.5/library/sjstats | FALSE | FALSE | 2019-06-04 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
snow | snow | 0.4.3 | 0.4-3 | /Users/sasha/Library/R/3.5/library/snow | /Users/sasha/Library/R/3.5/library/snow | FALSE | FALSE | 2018-09-14 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
stringi | stringi | 1.4.3 | 1.4.3 | /Users/sasha/Library/R/3.5/library/stringi | /Users/sasha/Library/R/3.5/library/stringi | FALSE | FALSE | 2019-03-12 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
stringr | stringr | 1.4.0 | 1.4.0 | /Users/sasha/Library/R/3.5/library/stringr | /Users/sasha/Library/R/3.5/library/stringr | TRUE | FALSE | 2019-02-10 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
SummarizedExperiment | SummarizedExperiment | 1.12.0 | 1.12.0 | /Users/sasha/Library/R/3.5/library/SummarizedExperiment | /Users/sasha/Library/R/3.5/library/SummarizedExperiment | TRUE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
survey | survey | 3.36 | 3.36 | /Users/sasha/Library/R/3.5/library/survey | /Users/sasha/Library/R/3.5/library/survey | FALSE | FALSE | 2019-04-27 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
survival | survival | 2.44.1.1 | 2.44-1.1 | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/survival | /Library/Frameworks/R.framework/Versions/3.5/Resources/library/survival | FALSE | FALSE | 2019-04-01 | CRAN (R 3.5.2) | NA | /Library/Frameworks/R.framework/Versions/3.5/Resources/library |
testthat | testthat | 2.2.1 | 2.2.1 | /Users/sasha/Library/R/3.5/library/testthat | /Users/sasha/Library/R/3.5/library/testthat | FALSE | FALSE | 2019-07-25 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
tibble | tibble | 2.1.3 | 2.1.3 | /Users/sasha/Library/R/3.5/library/tibble | /Users/sasha/Library/R/3.5/library/tibble | TRUE | FALSE | 2019-06-06 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
tidyr | tidyr | 0.8.3 | 0.8.3 | /Users/sasha/Library/R/3.5/library/tidyr | /Users/sasha/Library/R/3.5/library/tidyr | TRUE | FALSE | 2019-03-01 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
tidyselect | tidyselect | 0.2.5 | 0.2.5 | /Users/sasha/Library/R/3.5/library/tidyselect | /Users/sasha/Library/R/3.5/library/tidyselect | FALSE | FALSE | 2018-10-11 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
tidyverse | tidyverse | 1.2.1 | 1.2.1 | /Users/sasha/Library/R/3.5/library/tidyverse | /Users/sasha/Library/R/3.5/library/tidyverse | TRUE | FALSE | 2017-11-14 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
TMB | TMB | 1.7.15 | 1.7.15 | /Users/sasha/Library/R/3.5/library/TMB | /Users/sasha/Library/R/3.5/library/TMB | FALSE | FALSE | 2018-11-09 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
usethis | usethis | 1.5.1 | 1.5.1 | /Users/sasha/Library/R/3.5/library/usethis | /Users/sasha/Library/R/3.5/library/usethis | FALSE | FALSE | 2019-07-04 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
vctrs | vctrs | 0.2.0 | 0.2.0 | /Users/sasha/Library/R/3.5/library/vctrs | /Users/sasha/Library/R/3.5/library/vctrs | FALSE | FALSE | 2019-07-05 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
vegan | vegan | 2.5.6 | 2.5-6 | /Users/sasha/Library/R/3.5/library/vegan | /Users/sasha/Library/R/3.5/library/vegan | TRUE | FALSE | 2019-09-01 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
viridisLite | viridisLite | 0.3.0 | 0.3.0 | /Users/sasha/Library/R/3.5/library/viridisLite | /Users/sasha/Library/R/3.5/library/viridisLite | FALSE | FALSE | 2018-02-01 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
webshot | webshot | 0.5.1 | 0.5.1 | /Users/sasha/Library/R/3.5/library/webshot | /Users/sasha/Library/R/3.5/library/webshot | FALSE | FALSE | 2018-09-28 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
withr | withr | 2.1.2 | 2.1.2 | /Users/sasha/Library/R/3.5/library/withr | /Users/sasha/Library/R/3.5/library/withr | FALSE | FALSE | 2018-03-15 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
xfun | xfun | 0.9 | 0.9 | /Users/sasha/Library/R/3.5/library/xfun | /Users/sasha/Library/R/3.5/library/xfun | FALSE | FALSE | 2019-08-21 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
XML | XML | 3.98.1.20 | 3.98-1.20 | /Users/sasha/Library/R/3.5/library/XML | /Users/sasha/Library/R/3.5/library/XML | FALSE | FALSE | 2019-06-06 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
xml2 | xml2 | 1.2.2 | 1.2.2 | /Users/sasha/Library/R/3.5/library/xml2 | /Users/sasha/Library/R/3.5/library/xml2 | FALSE | FALSE | 2019-08-09 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
xtable | xtable | 1.8.4 | 1.8-4 | /Users/sasha/Library/R/3.5/library/xtable | /Users/sasha/Library/R/3.5/library/xtable | FALSE | FALSE | 2019-04-21 | CRAN (R 3.5.2) | NA | /Users/sasha/Library/R/3.5/library |
XVector | XVector | 0.22.0 | 0.22.0 | /Users/sasha/Library/R/3.5/library/XVector | /Users/sasha/Library/R/3.5/library/XVector | FALSE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |
yaml | yaml | 2.2.0 | 2.2.0 | /Users/sasha/Library/R/3.5/library/yaml | /Users/sasha/Library/R/3.5/library/yaml | FALSE | FALSE | 2018-07-25 | CRAN (R 3.5.3) | NA | /Users/sasha/Library/R/3.5/library |
zeallot | zeallot | 0.1.0 | 0.1.0 | /Users/sasha/Library/R/3.5/library/zeallot | /Users/sasha/Library/R/3.5/library/zeallot | FALSE | FALSE | 2018-01-28 | CRAN (R 3.5.0) | NA | /Users/sasha/Library/R/3.5/library |
zlibbioc | zlibbioc | 1.28.0 | 1.28.0 | /Users/sasha/Library/R/3.5/library/zlibbioc | /Users/sasha/Library/R/3.5/library/zlibbioc | FALSE | FALSE | 2018-10-30 | Bioconductor | NA | /Users/sasha/Library/R/3.5/library |